[![AnalyticsDojo](https://raw.githubusercontent.com/rpi-techfundamentals/fall2018-materials/master/fig/final-logo.png)](http://rpi.analyticsdojo.com)

Ludwig

rpi.analyticsdojo.com

Ludwig, a project of Uber, provides a new data type-based approach to deep learning model design that makes the tool suited for many different applications. Rather than building out the architecture, you just need to specify the data.

First let’s install ludwig and grab some data.

```!pip install ludwig

</div>

<div class="output_wrapper" markdown="1">
<div class="output_subarea" markdown="1">
{:.output_stream}

Collecting ludwig [?25l Downloading https://files.pythonhosted.org/packages/cd/a2/9f7f1952398e5aeb2f39579616fab8c3fada84a956ba6c855e6bc30a99f1/ludwig-0.1.1.tar.gz (129kB)  100% |████████████████████████████████| 133kB 3.7MB/s [?25hRequirement already satisfied: Cython>=0.25 in /usr/local/lib/python3.6/dist-packages (from ludwig) (0.29.6) Requirement already satisfied: h5py>=2.6 in /usr/local/lib/python3.6/dist-packages (from ludwig) (2.8.0) Requirement already satisfied: matplotlib>=3.0 in /usr/local/lib/python3.6/dist-packages (from ludwig) (3.0.3) Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.6/dist-packages (from ludwig) (1.16.2) Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.6/dist-packages (from ludwig) (0.23.4) Requirement already satisfied: scipy>=0.18 in /usr/local/lib/python3.6/dist-packages (from ludwig) (1.2.1) Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from ludwig) (0.20.3) Requirement already satisfied: scikit-image==0.14.2 in /usr/local/lib/python3.6/dist-packages (from ludwig) (0.14.2) Requirement already satisfied: seaborn>=0.7 in /usr/local/lib/python3.6/dist-packages (from ludwig) (0.7.1) Collecting spacy>=2.1 (from ludwig) [?25l Downloading https://files.pythonhosted.org/packages/52/da/3a1c54694c2d2f40df82f38a19ae14c6eb24a5a1a0dae87205ebea7a84d8/spacy-2.1.3-cp36-cp36m-manylinux1_x86_64.whl (27.7MB)  100% |████████████████████████████████| 27.7MB 1.3MB/s [?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from ludwig) (4.28.1) Requirement already satisfied: tabulate>=0.7 in /usr/local/lib/python3.6/dist-packages (from ludwig) (0.8.3) Requirement already satisfied: tensorflow==1.13.1 in /usr/local/lib/python3.6/dist-packages (from ludwig) (1.13.1) Requirement already satisfied: PyYAML>=3.12 in /usr/local/lib/python3.6/dist-packages (from ludwig) (3.13) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from h5py>=2.6->ludwig) (1.11.0) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=3.0->ludwig) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=3.0->ludwig) (1.0.1) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=3.0->ludwig) (2.5.3) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=3.0->ludwig) (2.4.0) Requirement already satisfied: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pandas>=0.19->ludwig) (2018.9) Requirement already satisfied: cloudpickle>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from scikit-image==0.14.2->ludwig) (0.6.1) Requirement already satisfied: networkx>=1.8 in /usr/local/lib/python3.6/dist-packages (from scikit-image==0.14.2->ludwig) (2.2) Requirement already satisfied: dask[array]>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image==0.14.2->ludwig) (1.1.5) Requirement already satisfied: pillow>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image==0.14.2->ludwig) (4.3.0) Requirement already satisfied: PyWavelets>=0.4.0 in /usr/local/lib/python3.6/dist-packages (from scikit-image==0.14.2->ludwig) (1.0.3) Requirement already satisfied: plac<1.0.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.1->ludwig) (0.9.6) Collecting srsly<1.1.0,>=0.0.5 (from spacy>=2.1->ludwig) [?25l Downloading https://files.pythonhosted.org/packages/6b/97/47753e3393aa4b18de9f942fac26f18879d1ae950243a556888f389d1398/srsly-0.0.5-cp36-cp36m-manylinux1_x86_64.whl (180kB)  100% |████████████████████████████████| 184kB 11.4MB/s [?25hRequirement already satisfied: jsonschema<3.0.0,>=2.6.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.1->ludwig) (2.6.0) Collecting wasabi<1.1.0,>=0.2.0 (from spacy>=2.1->ludwig) Downloading https://files.pythonhosted.org/packages/76/6c/0376977df1ba9f0ec27835d80456d9284c79737cb5205649451db1181f01/wasabi-0.2.1-py3-none-any.whl Collecting blis<0.3.0,>=0.2.2 (from spacy>=2.1->ludwig) [?25l Downloading https://files.pythonhosted.org/packages/34/46/b1d0bb71d308e820ed30316c5f0a017cb5ef5f4324bcbc7da3cf9d3b075c/blis-0.2.4-cp36-cp36m-manylinux1_x86_64.whl (3.2MB)  100% |████████████████████████████████| 3.2MB 9.6MB/s [?25hRequirement already satisfied: preshed<2.1.0,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.1->ludwig) (2.0.1) Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.1->ludwig) (2.0.2) Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.1->ludwig) (1.0.2) Collecting thinc<7.1.0,>=7.0.2 (from spacy>=2.1->ludwig) [?25l Downloading https://files.pythonhosted.org/packages/a9/f1/3df317939a07b2fc81be1a92ac10bf836a1d87b4016346b25f8b63dee321/thinc-7.0.4-cp36-cp36m-manylinux1_x86_64.whl (2.1MB)  100% |████████████████████████████████| 2.1MB 11.3MB/s [?25hRequirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.6/dist-packages (from spacy>=2.1->ludwig) (2.18.4) Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (1.0.7) Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (0.33.1) Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (0.7.1) Requirement already satisfied: tensorflow-estimator<1.14.0rc0,>=1.13.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (1.13.0) Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (3.7.1) Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (1.15.0) Requirement already satisfied: gast>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (0.2.2) Requirement already satisfied: absl-py>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (0.7.1) Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (1.0.9) Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (1.1.0) Requirement already satisfied: tensorboard<1.14.0,>=1.13.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow==1.13.1->ludwig) (1.13.1) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from kiwisolver>=1.0.1->matplotlib>=3.0->ludwig) (40.9.0) Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx>=1.8->scikit-image==0.14.2->ludwig) (4.4.0) Requirement already satisfied: toolz>=0.7.3; extra == “array” in /usr/local/lib/python3.6/dist-packages (from dask[array]>=1.0.0->scikit-image==0.14.2->ludwig) (0.9.0) Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow>=4.3.0->scikit-image==0.14.2->ludwig) (0.46) Requirement already satisfied: urllib3<1.23,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.1->ludwig) (1.22) Requirement already satisfied: idna<2.7,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.1->ludwig) (2.6) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.1->ludwig) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=2.1->ludwig) (2019.3.9) Requirement already satisfied: mock>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow==1.13.1->ludwig) (2.0.0) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.14.0,>=1.13.0->tensorflow==1.13.1->ludwig) (3.1) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.14.0,>=1.13.0->tensorflow==1.13.1->ludwig) (0.15.2) Requirement already satisfied: pbr>=0.11 in /usr/local/lib/python3.6/dist-packages (from mock>=2.0.0->tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow==1.13.1->ludwig) (5.1.3) Building wheels for collected packages: ludwig Building wheel for ludwig (setup.py) … [?25ldone [?25h Stored in directory: /root/.cache/pip/wheels/95/e6/05/fa2b84191f6635508ed189ff80d40a641b4c42bc9709194c4d Successfully built ludwig Installing collected packages: srsly, wasabi, blis, thinc, spacy, ludwig Found existing installation: thinc 6.12.1 Uninstalling thinc-6.12.1: Successfully uninstalled thinc-6.12.1 Found existing installation: spacy 2.0.18 Uninstalling spacy-2.0.18: Successfully uninstalled spacy-2.0.18 Successfully installed blis-0.2.4 ludwig-0.1.1 spacy-2.1.3 srsly-0.0.5 thinc-7.0.4 wasabi-0.2.1

</div>
</div>
</div>



<div markdown="1" class="cell code_cell">
<div class="input_area" markdown="1">
```!wget https://raw.githubusercontent.com/rpi-techfundamentals/fall2018-materials/master/input/train.csv && wget https://raw.githubusercontent.com/rpi-techfundamentals/fall2018-materials/master/input/test.csv
  

--2019-04-15 14:41:15--  https://raw.githubusercontent.com/rpi-techfundamentals/fall2018-materials/master/input/train.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 61194 (60K) [text/plain]
Saving to: ‘train.csv’

train.csv           100%[===================>]  59.76K  --.-KB/s    in 0.02s   

2019-04-15 14:41:15 (2.34 MB/s) - ‘train.csv’ saved [61194/61194]

--2019-04-15 14:41:15--  https://raw.githubusercontent.com/rpi-techfundamentals/fall2018-materials/master/input/test.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 28629 (28K) [text/plain]
Saving to: ‘test.csv’

test.csv            100%[===================>]  27.96K  --.-KB/s    in 0.01s   

2019-04-15 14:41:15 (2.28 MB/s) - ‘test.csv’ saved [28629/28629]

Model Definition File

Here in order to describe the model, we need to create/download a model definition file. This is a simple file that describes the data.

input_features:
    -
        name: text
        type: text
        level: word
        encoder: parallel_cnn

output_features:
    -
        name: class
        type: category
        

```!wget https://raw.githubusercontent.com/rpi-techfundamentals/spring2019-materials/master/13-deep-learning3/model_definition.yaml

</div>

<div class="output_wrapper" markdown="1">
<div class="output_subarea" markdown="1">
{:.output_stream}

–2019-04-15 14:41:17– https://raw.githubusercontent.com/rpi-techfundamentals/spring2019-materials/master/13-deep-learning3/model_definition.yaml Resolving raw.githubusercontent.com (raw.githubusercontent.com)… 151.101.0.133, 151.101.64.133, 151.101.128.133, … Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443… connected. HTTP request sent, awaiting response… 200 OK Length: 524 [text/plain] Saving to: ‘model_definition.yaml’

model_definition.ya 100%[===================>] 524 –.-KB/s in 0s

2019-04-15 14:41:17 (83.2 MB/s) - ‘model_definition.yaml’ saved [524/524]

</div>
</div>
</div>



<div markdown="1" class="cell code_cell">
<div class="input_area" markdown="1">
```!cat model_definition.yaml

input_features:
    -
        name: Pclass
        type: category
    -
        name: Sex
        type: category
    -
        name: Age
        type: numerical
        missing_value_strategy: fill_with_mean
    -
        name: SibSp
        type: numerical
    -
        name: Parch
        type: numerical
    -
        name: Fare
        type: numerical
        missing_value_strategy: fill_with_mean
    -
        name: Embarked
        type: category

output_features:
    -
        name: Survived
        type: binary

Training the Model

We are good to now train the model.

While previously we have always done splits and done all of our training in core python. Here we are just going to call the ludwig command line tool.

ludwig experiment
–data_csv reuters-allcats.csv
–model_definition_file model_definition.yaml

```!ludwig experiment –data_csv train.csv \ –model_definition_file model_definition.yaml

</div>

<div class="output_wrapper" markdown="1">
<div class="output_subarea" markdown="1">
{:.output_stream}

WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:

  • https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  • https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue.

| |_ _ | |_ __ () _ | | || / \ V V / / _ | ||_,_,|_/_/|_, | |__/ ludwig v0.1.1 - Experiment

Experiment name: experiment Model name: run Output path: results/experiment_run_0

ludwig_version: ‘0.1.1’ command: (‘/usr/local/bin/ludwig experiment –data_csv train.csv ‘ ‘–model_definition_file model_definition.yaml’) dataset_type: ‘generic’ random_seed: 42 input_data: ‘train.csv’ model_definition: { ‘combiner’: {‘type’: ‘concat’}, ‘input_features’: [ { ‘name’: ‘Pclass’, ‘tied_weights’: None, ‘type’: ‘category’}, { ‘name’: ‘Sex’, ‘tied_weights’: None, ‘type’: ‘category’}, { ‘missing_value_strategy’: ‘fill_with_mean’, ‘name’: ‘Age’, ‘tied_weights’: None, ‘type’: ‘numerical’}, { ‘name’: ‘SibSp’, ‘tied_weights’: None, ‘type’: ‘numerical’}, { ‘name’: ‘Parch’, ‘tied_weights’: None, ‘type’: ‘numerical’}, { ‘missing_value_strategy’: ‘fill_with_mean’, ‘name’: ‘Fare’, ‘tied_weights’: None, ‘type’: ‘numerical’}, { ‘name’: ‘Embarked’, ‘tied_weights’: None, ‘type’: ‘category’}], ‘output_features’: [ { ‘dependencies’: [], ‘loss’: { ‘confidence_penalty’: 0, ‘robust_lambda’: 0, ‘threshold’: 0.5, ‘weight’: 1}, ‘name’: ‘Survived’, ‘reduce_dependencies’: ‘sum’, ‘reduce_input’: ‘sum’, ‘threshold’: 0.5, ‘type’: ‘binary’, ‘weight’: 1}], ‘preprocessing’: { ‘bag’: { ‘fill_value’: ‘’, ‘format’: ‘space’, ‘lowercase’: False, ‘missing_value_strategy’: ‘fill_with_const’, ‘most_common’: 10000}, ‘binary’: { ‘fill_value’: 0, ‘missing_value_strategy’: ‘fill_with_const’}, ‘category’: { ‘fill_value’: ‘', 'lowercase': False, 'missing_value_strategy': 'fill_with_const', 'most_common': 10000}, 'force_split': False, 'image': { 'in_memory': True, 'missing_value_strategy': 'backfill', 'resize_method': 'crop_or_pad'}, 'numerical': { 'fill_value': 0, 'missing_value_strategy': 'fill_with_const'}, 'sequence': { 'fill_value': '', 'format': 'space', 'lowercase': False, 'missing_value_strategy': 'fill_with_const', 'most_common': 20000, 'padding': 'right', 'padding_symbol': '', 'sequence_length_limit': 256, 'unknown_symbol': ''}, 'set': { 'fill_value': '', 'format': 'space', 'lowercase': False, 'missing_value_strategy': 'fill_with_const', 'most_common': 10000}, 'split_probabilities': (0.7, 0.1, 0.2), 'stratify': None, 'text': { 'char_format': 'characters', 'char_most_common': 70, 'char_sequence_length_limit': 1024, 'fill_value': '', 'lowercase': True, 'missing_value_strategy': 'fill_with_const', 'padding': 'right', 'padding_symbol': '', 'unknown_symbol': '', 'word_format': 'space_punct', 'word_most_common': 20000, 'word_sequence_length_limit': 256}, 'timeseries': { 'fill_value': '', 'format': 'space', 'missing_value_strategy': 'fill_with_const', 'padding': 'right', 'padding_value': 0, 'timeseries_length_limit': 256}}, 'training': { 'batch_size': 128, 'bucketing_field': None, 'decay': False, 'decay_rate': 0.96, 'decay_steps': 10000, 'dropout_rate': 0.0, 'early_stop': 5, 'epochs': 100, 'eval_batch_size': 0, 'gradient_clipping': None, 'increase_batch_size_on_plateau': 0, 'increase_batch_size_on_plateau_max': 512, 'increase_batch_size_on_plateau_patience': 5, 'increase_batch_size_on_plateau_rate': 2, 'learning_rate': 0.001, 'learning_rate_warmup_epochs': 5, 'optimizer': { 'beta1': 0.9, 'beta2': 0.999, 'epsilon': 1e-08, 'type': 'adam'}, 'reduce_learning_rate_on_plateau': 0, 'reduce_learning_rate_on_plateau_patience': 5, 'reduce_learning_rate_on_plateau_rate': 0.5, 'regularization_lambda': 0, 'regularizer': 'l2', 'staircase': False, 'validation_field': 'combined', 'validation_measure': 'loss'}}

Using full raw csv, no hdf5 and json file with the same name have been found Building dataset (it may take a while) /usr/local/lib/python3.6/dist-packages/ludwig/features/numerical_feature.py:63: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead. np.float32).as_matrix() /usr/local/lib/python3.6/dist-packages/ludwig/features/binary_feature.py:62: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead. np.bool_).as_matrix() Writing dataset Writing train set metadata with vocabulary Training set: 630 Validation set: 81 Test set: 180 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. embedding_size (50) is greater than vocab_size (4). Setting embedding size to be equal to vocab_size. embedding_size (50) is greater than vocab_size (3). Setting embedding size to be equal to vocab_size. embedding_size (50) is greater than vocab_size (5). Setting embedding size to be equal to vocab_size. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead.

╒══════════╕ │ TRAINING │ ╘══════════╛

2019-04-15 14:41:29.343441: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2300000000 Hz 2019-04-15 14:41:29.346608: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x2020d60 executing computations on platform Host. Devices: 2019-04-15 14:41:29.346694: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): ,

Epoch 1 Training: 100% 5/5 [00:00<00:00, 10.08it/s] Evaluation train: 100% 5/5 [00:00<00:00, 110.90it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 614.91it/s] Evaluation test : 100% 2/2 [00:00<00:00, 729.38it/s] Took 0.5719s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 7.9026 │ 0.3968 │ ├────────────┼────────┼────────────┤ │ vali │ 7.5711 │ 0.3827 │ ├────────────┼────────┼────────────┤ │ test │ 8.8524 │ 0.3667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 2 Training: 100% 5/5 [00:00<00:00, 276.59it/s] Evaluation train: 100% 5/5 [00:00<00:00, 732.60it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 755.87it/s] Evaluation test : 100% 2/2 [00:00<00:00, 843.92it/s] Took 0.3235s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 7.6934 │ 0.3968 │ ├────────────┼────────┼────────────┤ │ vali │ 7.3628 │ 0.3827 │ ├────────────┼────────┼────────────┤ │ test │ 8.6174 │ 0.3667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 3 Training: 100% 5/5 [00:00<00:00, 443.98it/s] Evaluation train: 100% 5/5 [00:00<00:00, 771.10it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 710.66it/s] Evaluation test : 100% 2/2 [00:00<00:00, 322.44it/s] Took 0.2996s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 7.4851 │ 0.3968 │ ├────────────┼────────┼────────────┤ │ vali │ 7.1558 │ 0.3827 │ ├────────────┼────────┼────────────┤ │ test │ 8.3837 │ 0.3611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 4 Training: 100% 5/5 [00:00<00:00, 455.84it/s] Evaluation train: 100% 5/5 [00:00<00:00, 773.37it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 834.36it/s] Evaluation test : 100% 2/2 [00:00<00:00, 865.97it/s] Took 0.2475s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 7.2782 │ 0.3968 │ ├────────────┼────────┼────────────┤ │ vali │ 6.9506 │ 0.3827 │ ├────────────┼────────┼────────────┤ │ test │ 8.1514 │ 0.3611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 5 Training: 100% 5/5 [00:00<00:00, 445.86it/s] Evaluation train: 100% 5/5 [00:00<00:00, 814.71it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 660.52it/s] Evaluation test : 100% 2/2 [00:00<00:00, 837.94it/s] Took 0.2481s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 7.0727 │ 0.3984 │ ├────────────┼────────┼────────────┤ │ vali │ 6.7476 │ 0.3951 │ ├────────────┼────────┼────────────┤ │ test │ 7.9209 │ 0.3611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 6 Training: 100% 5/5 [00:00<00:00, 461.45it/s] Evaluation train: 100% 5/5 [00:00<00:00, 784.69it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 843.08it/s] Evaluation test : 100% 2/2 [00:00<00:00, 882.45it/s] Took 0.2411s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 6.8693 │ 0.4000 │ ├────────────┼────────┼────────────┤ │ vali │ 6.5471 │ 0.3951 │ ├────────────┼────────┼────────────┤ │ test │ 7.6929 │ 0.3667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 7 Training: 100% 5/5 [00:00<00:00, 454.23it/s] Evaluation train: 100% 5/5 [00:00<00:00, 779.84it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 816.97it/s] Evaluation test : 100% 2/2 [00:00<00:00, 831.46it/s] Took 0.2468s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 6.6683 │ 0.4016 │ ├────────────┼────────┼────────────┤ │ vali │ 6.3495 │ 0.4074 │ ├────────────┼────────┼────────────┤ │ test │ 7.4677 │ 0.3722 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 8 Training: 100% 5/5 [00:00<00:00, 430.87it/s] Evaluation train: 100% 5/5 [00:00<00:00, 746.34it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 778.74it/s] Evaluation test : 100% 2/2 [00:00<00:00, 656.75it/s] Took 0.2715s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 6.4704 │ 0.4000 │ ├────────────┼────────┼────────────┤ │ vali │ 6.1552 │ 0.4074 │ ├────────────┼────────┼────────────┤ │ test │ 7.2459 │ 0.3778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 9 Training: 100% 5/5 [00:00<00:00, 413.70it/s] Evaluation train: 100% 5/5 [00:00<00:00, 746.18it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 744.86it/s] Evaluation test : 100% 2/2 [00:00<00:00, 817.68it/s] Took 0.2651s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 6.2761 │ 0.4032 │ ├────────────┼────────┼────────────┤ │ vali │ 5.9643 │ 0.4074 │ ├────────────┼────────┼────────────┤ │ test │ 7.0279 │ 0.3833 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 10 Training: 100% 5/5 [00:00<00:00, 440.89it/s] Evaluation train: 100% 5/5 [00:00<00:00, 778.60it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 786.33it/s] Evaluation test : 100% 2/2 [00:00<00:00, 851.46it/s] Took 0.2500s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 6.0861 │ 0.4127 │ ├────────────┼────────┼────────────┤ │ vali │ 5.7773 │ 0.4198 │ ├────────────┼────────┼────────────┤ │ test │ 6.8142 │ 0.3889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 11 Training: 100% 5/5 [00:00<00:00, 411.29it/s] Evaluation train: 100% 5/5 [00:00<00:00, 772.66it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 789.29it/s] Evaluation test : 100% 2/2 [00:00<00:00, 814.82it/s] Took 0.2603s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 5.9009 │ 0.4095 │ ├────────────┼────────┼────────────┤ │ vali │ 5.5945 │ 0.4198 │ ├────────────┼────────┼────────────┤ │ test │ 6.6052 │ 0.3889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 12 Training: 100% 5/5 [00:00<00:00, 436.50it/s] Evaluation train: 100% 5/5 [00:00<00:00, 758.24it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 762.60it/s] Evaluation test : 100% 2/2 [00:00<00:00, 867.58it/s] Took 0.2527s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 5.7210 │ 0.4190 │ ├────────────┼────────┼────────────┤ │ vali │ 5.4165 │ 0.4198 │ ├────────────┼────────┼────────────┤ │ test │ 6.4013 │ 0.3944 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 13 Training: 100% 5/5 [00:00<00:00, 476.17it/s] Evaluation train: 100% 5/5 [00:00<00:00, 777.59it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 787.51it/s] Evaluation test : 100% 2/2 [00:00<00:00, 810.57it/s] Took 0.2433s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 5.5470 │ 0.4270 │ ├────────────┼────────┼────────────┤ │ vali │ 5.2436 │ 0.4198 │ ├────────────┼────────┼────────────┤ │ test │ 6.2030 │ 0.3944 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 14 Training: 100% 5/5 [00:00<00:00, 452.28it/s] Evaluation train: 100% 5/5 [00:00<00:00, 789.50it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 789.59it/s] Evaluation test : 100% 2/2 [00:00<00:00, 843.33it/s] Took 0.2463s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 5.3792 │ 0.4365 │ ├────────────┼────────┼────────────┤ │ vali │ 5.0764 │ 0.4198 │ ├────────────┼────────┼────────────┤ │ test │ 6.0107 │ 0.4111 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 15 Training: 100% 5/5 [00:00<00:00, 451.66it/s] Evaluation train: 100% 5/5 [00:00<00:00, 579.71it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 820.80it/s] Evaluation test : 100% 2/2 [00:00<00:00, 861.08it/s] Took 0.2671s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 5.2179 │ 0.4444 │ ├────────────┼────────┼────────────┤ │ vali │ 4.9153 │ 0.4321 │ ├────────────┼────────┼────────────┤ │ test │ 5.8247 │ 0.4278 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 16 Training: 100% 5/5 [00:00<00:00, 448.99it/s] Evaluation train: 100% 5/5 [00:00<00:00, 712.52it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 780.92it/s] Evaluation test : 100% 2/2 [00:00<00:00, 810.89it/s] Took 0.2627s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 5.0633 │ 0.4508 │ ├────────────┼────────┼────────────┤ │ vali │ 4.7606 │ 0.4444 │ ├────────────┼────────┼────────────┤ │ test │ 5.6452 │ 0.4444 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 17 Training: 100% 5/5 [00:00<00:00, 404.22it/s] Evaluation train: 100% 5/5 [00:00<00:00, 765.66it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 835.35it/s] Evaluation test : 100% 2/2 [00:00<00:00, 835.94it/s] Took 0.2625s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.9156 │ 0.4476 │ ├────────────┼────────┼────────────┤ │ vali │ 4.6128 │ 0.4691 │ ├────────────┼────────┼────────────┤ │ test │ 5.4724 │ 0.4611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 18 Training: 100% 5/5 [00:00<00:00, 447.81it/s] Evaluation train: 100% 5/5 [00:00<00:00, 695.34it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 667.46it/s] Evaluation test : 100% 2/2 [00:00<00:00, 791.45it/s] Took 0.2608s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.7748 │ 0.4540 │ ├────────────┼────────┼────────────┤ │ vali │ 4.4719 │ 0.5062 │ ├────────────┼────────┼────────────┤ │ test │ 5.3063 │ 0.4778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 19 Training: 100% 5/5 [00:00<00:00, 391.12it/s] Evaluation train: 100% 5/5 [00:00<00:00, 680.52it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 670.45it/s] Evaluation test : 100% 2/2 [00:00<00:00, 711.80it/s] Took 0.2840s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.6408 │ 0.4683 │ ├────────────┼────────┼────────────┤ │ vali │ 4.3382 │ 0.5309 │ ├────────────┼────────┼────────────┤ │ test │ 5.1471 │ 0.4944 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 20 Training: 100% 5/5 [00:00<00:00, 443.24it/s] Evaluation train: 100% 5/5 [00:00<00:00, 772.83it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 778.74it/s] Evaluation test : 100% 2/2 [00:00<00:00, 824.35it/s] Took 0.2519s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.5136 │ 0.4714 │ ├────────────┼────────┼────────────┤ │ vali │ 4.2120 │ 0.5432 │ ├────────────┼────────┼────────────┤ │ test │ 4.9946 │ 0.5111 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 21 Training: 100% 5/5 [00:00<00:00, 456.19it/s] Evaluation train: 100% 5/5 [00:00<00:00, 770.22it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 744.46it/s] Evaluation test : 100% 2/2 [00:00<00:00, 864.98it/s] Took 0.2458s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.3929 │ 0.4794 │ ├────────────┼────────┼────────────┤ │ vali │ 4.0931 │ 0.5432 │ ├────────────┼────────┼────────────┤ │ test │ 4.8489 │ 0.5111 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 22 Training: 100% 5/5 [00:00<00:00, 447.02it/s] Evaluation train: 100% 5/5 [00:00<00:00, 742.78it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 700.22it/s] Evaluation test : 100% 2/2 [00:00<00:00, 764.69it/s] Took 0.2560s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.2788 │ 0.4905 │ ├────────────┼────────┼────────────┤ │ vali │ 3.9815 │ 0.5309 │ ├────────────┼────────┼────────────┤ │ test │ 4.7099 │ 0.5111 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 23 Training: 100% 5/5 [00:00<00:00, 462.39it/s] Evaluation train: 100% 5/5 [00:00<00:00, 802.34it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 839.87it/s] Evaluation test : 100% 2/2 [00:00<00:00, 838.19it/s] Took 0.2412s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.1710 │ 0.5127 │ ├────────────┼────────┼────────────┤ │ vali │ 3.8767 │ 0.5556 │ ├────────────┼────────┼────────────┤ │ test │ 4.5776 │ 0.5222 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 24 Training: 100% 5/5 [00:00<00:00, 438.30it/s] Evaluation train: 100% 5/5 [00:00<00:00, 770.90it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 829.73it/s] Evaluation test : 100% 2/2 [00:00<00:00, 848.36it/s] Took 0.2502s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 4.0692 │ 0.5238 │ ├────────────┼────────┼────────────┤ │ vali │ 3.7784 │ 0.5679 │ ├────────────┼────────┼────────────┤ │ test │ 4.4520 │ 0.5444 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 25 Training: 100% 5/5 [00:00<00:00, 419.62it/s] Evaluation train: 100% 5/5 [00:00<00:00, 783.22it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 736.49it/s] Evaluation test : 100% 2/2 [00:00<00:00, 844.01it/s] Took 0.2558s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.9733 │ 0.5349 │ ├────────────┼────────┼────────────┤ │ vali │ 3.6860 │ 0.5926 │ ├────────────┼────────┼────────────┤ │ test │ 4.3329 │ 0.5556 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 26 Training: 100% 5/5 [00:00<00:00, 486.97it/s] Evaluation train: 100% 5/5 [00:00<00:00, 792.13it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 666.82it/s] Evaluation test : 100% 2/2 [00:00<00:00, 836.27it/s] Took 0.2403s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.8830 │ 0.5413 │ ├────────────┼────────┼────────────┤ │ vali │ 3.5990 │ 0.5926 │ ├────────────┼────────┼────────────┤ │ test │ 4.2202 │ 0.5722 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 27 Training: 100% 5/5 [00:00<00:00, 437.38it/s] Evaluation train: 100% 5/5 [00:00<00:00, 752.83it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 726.66it/s] Evaluation test : 100% 2/2 [00:00<00:00, 827.28it/s] Took 0.2552s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.7980 │ 0.5571 │ ├────────────┼────────┼────────────┤ │ vali │ 3.5170 │ 0.6173 │ ├────────────┼────────┼────────────┤ │ test │ 4.1136 │ 0.5944 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 28 Training: 100% 5/5 [00:00<00:00, 473.07it/s] Evaluation train: 100% 5/5 [00:00<00:00, 713.32it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 832.70it/s] Evaluation test : 100% 2/2 [00:00<00:00, 814.67it/s] Took 0.2473s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.7180 │ 0.5587 │ ├────────────┼────────┼────────────┤ │ vali │ 3.4395 │ 0.6049 │ ├────────────┼────────┼────────────┤ │ test │ 4.0128 │ 0.5944 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 29 Training: 100% 5/5 [00:00<00:00, 454.26it/s] Evaluation train: 100% 5/5 [00:00<00:00, 782.78it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 830.88it/s] Evaluation test : 100% 2/2 [00:00<00:00, 813.80it/s] Took 0.2479s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.6428 │ 0.5683 │ ├────────────┼────────┼────────────┤ │ vali │ 3.3662 │ 0.6049 │ ├────────────┼────────┼────────────┤ │ test │ 3.9176 │ 0.6056 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 30 Training: 100% 5/5 [00:00<00:00, 416.43it/s] Evaluation train: 100% 5/5 [00:00<00:00, 780.74it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 793.32it/s] Evaluation test : 100% 2/2 [00:00<00:00, 820.32it/s] Took 0.2561s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.5719 │ 0.5651 │ ├────────────┼────────┼────────────┤ │ vali │ 3.2969 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 3.8276 │ 0.6000 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 31 Training: 100% 5/5 [00:00<00:00, 454.96it/s] Evaluation train: 100% 5/5 [00:00<00:00, 812.00it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 854.41it/s] Evaluation test : 100% 2/2 [00:00<00:00, 850.60it/s] Took 0.2407s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.5053 │ 0.5746 │ ├────────────┼────────┼────────────┤ │ vali │ 3.2311 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 3.7425 │ 0.6000 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 32 Training: 100% 5/5 [00:00<00:00, 464.45it/s] Evaluation train: 100% 5/5 [00:00<00:00, 773.60it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 701.98it/s] Evaluation test : 100% 2/2 [00:00<00:00, 806.05it/s] Took 0.2474s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.4424 │ 0.5841 │ ├────────────┼────────┼────────────┤ │ vali │ 3.1687 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 3.6620 │ 0.6056 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 33 Training: 100% 5/5 [00:00<00:00, 453.83it/s] Evaluation train: 100% 5/5 [00:00<00:00, 757.97it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 718.20it/s] Evaluation test : 100% 2/2 [00:00<00:00, 551.23it/s] Took 0.2634s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.3830 │ 0.5857 │ ├────────────┼────────┼────────────┤ │ vali │ 3.1093 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 3.5857 │ 0.6056 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 34 Training: 100% 5/5 [00:00<00:00, 440.54it/s] Evaluation train: 100% 5/5 [00:00<00:00, 778.19it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 722.91it/s] Evaluation test : 100% 2/2 [00:00<00:00, 799.68it/s] Took 0.2574s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.3268 │ 0.5857 │ ├────────────┼────────┼────────────┤ │ vali │ 3.0528 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 3.5134 │ 0.6167 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 35 Training: 100% 5/5 [00:00<00:00, 466.61it/s] Evaluation train: 100% 5/5 [00:00<00:00, 784.80it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 818.40it/s] Evaluation test : 100% 2/2 [00:00<00:00, 873.90it/s] Took 0.2424s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.2734 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.9989 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 3.4448 │ 0.6222 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 36 Training: 100% 5/5 [00:00<00:00, 486.31it/s] Evaluation train: 100% 5/5 [00:00<00:00, 796.12it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 785.01it/s] Evaluation test : 100% 2/2 [00:00<00:00, 845.20it/s] Took 0.2379s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.2225 │ 0.5984 │ ├────────────┼────────┼────────────┤ │ vali │ 2.9473 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 3.3795 │ 0.6333 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 37 Training: 100% 5/5 [00:00<00:00, 444.96it/s] Evaluation train: 100% 5/5 [00:00<00:00, 758.55it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 722.78it/s] Evaluation test : 100% 2/2 [00:00<00:00, 819.68it/s] Took 0.2551s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.1740 │ 0.5937 │ ├────────────┼────────┼────────────┤ │ vali │ 2.8980 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 3.3173 │ 0.6389 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 38 Training: 100% 5/5 [00:00<00:00, 420.89it/s] Evaluation train: 100% 5/5 [00:00<00:00, 715.48it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 774.43it/s] Evaluation test : 100% 2/2 [00:00<00:00, 830.64it/s] Took 0.2631s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.1275 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.8507 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 3.2579 │ 0.6500 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 39 Training: 100% 5/5 [00:00<00:00, 435.36it/s] Evaluation train: 100% 5/5 [00:00<00:00, 769.40it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 820.80it/s] Evaluation test : 100% 2/2 [00:00<00:00, 863.11it/s] Took 0.2513s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.0828 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.8052 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 3.2010 │ 0.6444 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 40 Training: 100% 5/5 [00:00<00:00, 469.51it/s] Evaluation train: 100% 5/5 [00:00<00:00, 747.19it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 777.30it/s] Evaluation test : 100% 2/2 [00:00<00:00, 871.63it/s] Took 0.2456s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 3.0398 │ 0.5968 │ ├────────────┼────────┼────────────┤ │ vali │ 2.7613 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 3.1465 │ 0.6556 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 41 Training: 100% 5/5 [00:00<00:00, 469.54it/s] Evaluation train: 100% 5/5 [00:00<00:00, 796.40it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 780.92it/s] Evaluation test : 100% 2/2 [00:00<00:00, 790.63it/s] Took 0.2431s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.9982 │ 0.5984 │ ├────────────┼────────┼────────────┤ │ vali │ 2.7190 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 3.0941 │ 0.6556 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 42 Training: 100% 5/5 [00:00<00:00, 430.72it/s] Evaluation train: 100% 5/5 [00:00<00:00, 731.10it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 704.45it/s] Evaluation test : 100% 2/2 [00:00<00:00, 851.98it/s] Took 0.2605s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.9580 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.6781 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 3.0437 │ 0.6556 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 43 Training: 100% 5/5 [00:00<00:00, 351.76it/s] Evaluation train: 100% 5/5 [00:00<00:00, 660.10it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 752.07it/s] Evaluation test : 100% 2/2 [00:00<00:00, 560.36it/s] Took 0.3093s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.9190 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.6384 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 2.9950 │ 0.6556 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 44 Training: 100% 5/5 [00:00<00:00, 436.36it/s] Evaluation train: 100% 5/5 [00:00<00:00, 725.21it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 770.87it/s] Evaluation test : 100% 2/2 [00:00<00:00, 806.67it/s] Took 0.2577s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.8810 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.5999 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 2.9479 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 45 Training: 100% 5/5 [00:00<00:00, 432.57it/s] Evaluation train: 100% 5/5 [00:00<00:00, 765.41it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 795.13it/s] Evaluation test : 100% 2/2 [00:00<00:00, 815.93it/s] Took 0.2563s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.8441 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.5625 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 2.9023 │ 0.6556 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 46 Training: 100% 5/5 [00:00<00:00, 466.43it/s] Evaluation train: 100% 5/5 [00:00<00:00, 804.96it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 814.27it/s] Evaluation test : 100% 2/2 [00:00<00:00, 849.74it/s] Took 0.2414s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.8080 │ 0.5952 │ ├────────────┼────────┼────────────┤ │ vali │ 2.5261 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 2.8581 │ 0.6556 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 47 Training: 100% 5/5 [00:00<00:00, 456.46it/s] Evaluation train: 100% 5/5 [00:00<00:00, 793.74it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 790.93it/s] Evaluation test : 100% 2/2 [00:00<00:00, 823.14it/s] Took 0.2458s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.7728 │ 0.6000 │ ├────────────┼────────┼────────────┤ │ vali │ 2.4907 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 2.8150 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 48 Training: 100% 5/5 [00:00<00:00, 413.87it/s] Evaluation train: 100% 5/5 [00:00<00:00, 769.88it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 783.69it/s] Evaluation test : 100% 2/2 [00:00<00:00, 816.17it/s] Took 0.2590s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.7383 │ 0.6016 │ ├────────────┼────────┼────────────┤ │ vali │ 2.4560 │ 0.6420 │ ├────────────┼────────┼────────────┤ │ test │ 2.7732 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 49 Training: 100% 5/5 [00:00<00:00, 467.02it/s] Evaluation train: 100% 5/5 [00:00<00:00, 764.30it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 827.28it/s] Evaluation test : 100% 2/2 [00:00<00:00, 856.24it/s] Took 0.2435s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.7044 │ 0.6016 │ ├────────────┼────────┼────────────┤ │ vali │ 2.4222 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 2.7323 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 50 Training: 100% 5/5 [00:00<00:00, 436.84it/s] Evaluation train: 100% 5/5 [00:00<00:00, 797.37it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 840.37it/s] Evaluation test : 100% 2/2 [00:00<00:00, 858.52it/s] Took 0.2484s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.6712 │ 0.6000 │ ├────────────┼────────┼────────────┤ │ vali │ 2.3891 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 2.6924 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 51 Training: 100% 5/5 [00:00<00:00, 328.96it/s] Evaluation train: 100% 5/5 [00:00<00:00, 792.69it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 830.06it/s] Evaluation test : 100% 2/2 [00:00<00:00, 841.38it/s] Took 0.2872s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.6385 │ 0.6016 │ ├────────────┼────────┼────────────┤ │ vali │ 2.3566 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 2.6534 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 52 Training: 100% 5/5 [00:00<00:00, 243.78it/s] Evaluation train: 100% 5/5 [00:00<00:00, 790.96it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 726.66it/s] Evaluation test : 100% 2/2 [00:00<00:00, 863.38it/s] Took 0.3631s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.6063 │ 0.6016 │ ├────────────┼────────┼────────────┤ │ vali │ 2.3248 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 2.6153 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 53 Training: 100% 5/5 [00:00<00:00, 413.96it/s] Evaluation train: 100% 5/5 [00:00<00:00, 732.76it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 759.70it/s] Evaluation test : 100% 2/2 [00:00<00:00, 834.11it/s] Took 0.2628s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.5745 │ 0.6016 │ ├────────────┼────────┼────────────┤ │ vali │ 2.2935 │ 0.6296 │ ├────────────┼────────┼────────────┤ │ test │ 2.5779 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 54 Training: 100% 5/5 [00:00<00:00, 465.53it/s] Evaluation train: 100% 5/5 [00:00<00:00, 769.37it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 813.95it/s] Evaluation test : 100% 2/2 [00:00<00:00, 859.14it/s] Took 0.2446s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.5432 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 2.2627 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.5412 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 55 Training: 100% 5/5 [00:00<00:00, 437.41it/s] Evaluation train: 100% 5/5 [00:00<00:00, 794.35it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 796.19it/s] Evaluation test : 100% 2/2 [00:00<00:00, 832.45it/s] Took 0.2502s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.5122 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 2.2324 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.5052 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 56 Training: 100% 5/5 [00:00<00:00, 274.75it/s] Evaluation train: 100% 5/5 [00:00<00:00, 759.95it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 731.99it/s] Evaluation test : 100% 2/2 [00:00<00:00, 769.46it/s] Took 0.3527s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.4816 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 2.2026 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.4698 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 57 Training: 100% 5/5 [00:00<00:00, 289.87it/s] Evaluation train: 100% 5/5 [00:00<00:00, 646.33it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 824.68it/s] Evaluation test : 100% 2/2 [00:00<00:00, 797.85it/s] Took 0.3365s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.4513 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 2.1732 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.4349 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 58 Training: 100% 5/5 [00:00<00:00, 470.30it/s] Evaluation train: 100% 5/5 [00:00<00:00, 807.34it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 803.51it/s] Evaluation test : 100% 2/2 [00:00<00:00, 825.89it/s] Took 0.2415s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.4213 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 2.1442 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.4007 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 59 Training: 100% 5/5 [00:00<00:00, 450.07it/s] Evaluation train: 100% 5/5 [00:00<00:00, 746.18it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 740.00it/s] Evaluation test : 100% 2/2 [00:00<00:00, 796.26it/s] Took 0.2662s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.3916 │ 0.6016 │ ├────────────┼────────┼────────────┤ │ vali │ 2.1155 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.3669 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 60 Training: 100% 5/5 [00:00<00:00, 460.15it/s] Evaluation train: 100% 5/5 [00:00<00:00, 760.75it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 764.27it/s] Evaluation test : 100% 2/2 [00:00<00:00, 841.05it/s] Took 0.2500s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.3621 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 2.0872 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.3337 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 61 Training: 100% 5/5 [00:00<00:00, 403.43it/s] Evaluation train: 100% 5/5 [00:00<00:00, 710.10it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 840.21it/s] Evaluation test : 100% 2/2 [00:00<00:00, 632.34it/s] Took 0.2807s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.3328 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 2.0592 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.3009 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 62 Training: 100% 5/5 [00:00<00:00, 428.22it/s] Evaluation train: 100% 5/5 [00:00<00:00, 668.14it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 777.15it/s] Evaluation test : 100% 2/2 [00:00<00:00, 669.21it/s] Took 0.2748s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.3038 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 2.0315 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.2685 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 63 Training: 100% 5/5 [00:00<00:00, 454.09it/s] Evaluation train: 100% 5/5 [00:00<00:00, 797.18it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 780.63it/s] Evaluation test : 100% 2/2 [00:00<00:00, 845.20it/s] Took 0.2465s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.2750 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 2.0042 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.2366 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 64 Training: 100% 5/5 [00:00<00:00, 453.88it/s] Evaluation train: 100% 5/5 [00:00<00:00, 608.81it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 757.92it/s] Evaluation test : 100% 2/2 [00:00<00:00, 833.77it/s] Took 0.2652s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.2464 │ 0.6016 │ ├────────────┼────────┼────────────┤ │ vali │ 1.9770 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.2051 │ 0.6611 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 65 Training: 100% 5/5 [00:00<00:00, 412.13it/s] Evaluation train: 100% 5/5 [00:00<00:00, 727.52it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 776.29it/s] Evaluation test : 100% 2/2 [00:00<00:00, 792.42it/s] Took 0.2643s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.2180 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 1.9502 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.1739 │ 0.6667 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 66 Training: 100% 5/5 [00:00<00:00, 427.18it/s] Evaluation train: 100% 5/5 [00:00<00:00, 747.65it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 807.68it/s] Evaluation test : 100% 2/2 [00:00<00:00, 777.30it/s] Took 0.2586s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.1898 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 1.9236 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.1431 │ 0.6722 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 67 Training: 100% 5/5 [00:00<00:00, 471.89it/s] Evaluation train: 100% 5/5 [00:00<00:00, 803.51it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 832.86it/s] Evaluation test : 100% 2/2 [00:00<00:00, 880.42it/s] Took 0.2424s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.1618 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 1.8973 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.1127 │ 0.6722 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 68 Training: 100% 5/5 [00:00<00:00, 298.62it/s] Evaluation train: 100% 5/5 [00:00<00:00, 796.73it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 829.08it/s] Evaluation test : 100% 2/2 [00:00<00:00, 844.77it/s] Took 0.3015s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.1339 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 1.8712 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.0826 │ 0.6722 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 69 Training: 100% 5/5 [00:00<00:00, 447.07it/s] Evaluation train: 100% 5/5 [00:00<00:00, 346.37it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 766.08it/s] Evaluation test : 100% 2/2 [00:00<00:00, 860.72it/s] Took 0.3286s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.1062 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 1.8453 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.0529 │ 0.6722 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 70 Training: 100% 5/5 [00:00<00:00, 308.59it/s] Evaluation train: 100% 5/5 [00:00<00:00, 674.74it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 823.38it/s] Evaluation test : 100% 2/2 [00:00<00:00, 851.89it/s] Took 0.3164s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.0787 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 1.8196 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 2.0235 │ 0.6722 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 71 Training: 100% 5/5 [00:00<00:00, 460.36it/s] Evaluation train: 100% 5/5 [00:00<00:00, 403.67it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 713.68it/s] Evaluation test : 100% 2/2 [00:00<00:00, 831.71it/s] Took 0.3091s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.0514 │ 0.6032 │ ├────────────┼────────┼────────────┤ │ vali │ 1.7942 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 1.9944 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 72 Training: 100% 5/5 [00:00<00:00, 453.82it/s] Evaluation train: 100% 5/5 [00:00<00:00, 417.22it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 690.42it/s] Evaluation test : 100% 2/2 [00:00<00:00, 848.45it/s] Took 0.3130s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 2.0242 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 1.7690 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 1.9655 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 73 Training: 100% 5/5 [00:00<00:00, 450.93it/s] Evaluation train: 100% 5/5 [00:00<00:00, 742.78it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 693.50it/s] Evaluation test : 100% 2/2 [00:00<00:00, 805.05it/s] Took 0.2543s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.9972 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 1.7440 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 1.9370 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 74 Training: 100% 5/5 [00:00<00:00, 451.47it/s] Evaluation train: 100% 5/5 [00:00<00:00, 825.81it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 801.51it/s] Evaluation test : 100% 2/2 [00:00<00:00, 789.59it/s] Took 0.2448s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.9703 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 1.7192 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 1.9088 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 75 Training: 100% 5/5 [00:00<00:00, 449.40it/s] Evaluation train: 100% 5/5 [00:00<00:00, 767.51it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 843.08it/s] Evaluation test : 100% 2/2 [00:00<00:00, 845.71it/s] Took 0.2527s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.9436 │ 0.6048 │ ├────────────┼────────┼────────────┤ │ vali │ 1.6946 │ 0.6543 │ ├────────────┼────────┼────────────┤ │ test │ 1.8808 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 76 Training: 100% 5/5 [00:00<00:00, 320.58it/s] Evaluation train: 100% 5/5 [00:00<00:00, 734.19it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 723.90it/s] Evaluation test : 100% 2/2 [00:00<00:00, 826.30it/s] Took 0.3138s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.9171 │ 0.6063 │ ├────────────┼────────┼────────────┤ │ vali │ 1.6703 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.8532 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 77 Training: 100% 5/5 [00:00<00:00, 466.08it/s] Evaluation train: 100% 5/5 [00:00<00:00, 818.85it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 748.45it/s] Evaluation test : 100% 2/2 [00:00<00:00, 858.17it/s] Took 0.2412s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.8907 │ 0.6079 │ ├────────────┼────────┼────────────┤ │ vali │ 1.6461 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.8258 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 78 Training: 100% 5/5 [00:00<00:00, 421.08it/s] Evaluation train: 100% 5/5 [00:00<00:00, 761.99it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 858.61it/s] Evaluation test : 100% 2/2 [00:00<00:00, 865.34it/s] Took 0.2541s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.8645 │ 0.6079 │ ├────────────┼────────┼────────────┤ │ vali │ 1.6221 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.7986 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 79 Training: 100% 5/5 [00:00<00:00, 452.93it/s] Evaluation train: 100% 5/5 [00:00<00:00, 779.99it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 815.38it/s] Evaluation test : 100% 2/2 [00:00<00:00, 813.24it/s] Took 0.2471s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.8385 │ 0.6095 │ ├────────────┼────────┼────────────┤ │ vali │ 1.5984 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.7718 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 80 Training: 100% 5/5 [00:00<00:00, 442.53it/s] Evaluation train: 100% 5/5 [00:00<00:00, 768.78it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 770.30it/s] Evaluation test : 100% 2/2 [00:00<00:00, 761.42it/s] Took 0.2552s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.8127 │ 0.6095 │ ├────────────┼────────┼────────────┤ │ vali │ 1.5749 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.7451 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 81 Training: 100% 5/5 [00:00<00:00, 414.58it/s] Evaluation train: 100% 5/5 [00:00<00:00, 758.85it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 840.54it/s] Evaluation test : 100% 2/2 [00:00<00:00, 777.88it/s] Took 0.2594s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.7870 │ 0.6095 │ ├────────────┼────────┼────────────┤ │ vali │ 1.5515 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.7188 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 82 Training: 100% 5/5 [00:00<00:00, 391.73it/s] Evaluation train: 100% 5/5 [00:00<00:00, 751.61it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 690.99it/s] Evaluation test : 100% 2/2 [00:00<00:00, 841.89it/s] Took 0.2698s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.7615 │ 0.6127 │ ├────────────┼────────┼────────────┤ │ vali │ 1.5284 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.6927 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 83 Training: 100% 5/5 [00:00<00:00, 301.75it/s] Evaluation train: 100% 5/5 [00:00<00:00, 746.69it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 874.91it/s] Evaluation test : 100% 2/2 [00:00<00:00, 819.52it/s] Took 0.3045s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.7362 │ 0.6127 │ ├────────────┼────────┼────────────┤ │ vali │ 1.5055 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.6668 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 84 Training: 100% 5/5 [00:00<00:00, 369.40it/s] Evaluation train: 100% 5/5 [00:00<00:00, 655.20it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 774.43it/s] Evaluation test : 100% 2/2 [00:00<00:00, 786.19it/s] Took 0.2939s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.7110 │ 0.6127 │ ├────────────┼────────┼────────────┤ │ vali │ 1.4828 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.6412 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 85 Training: 100% 5/5 [00:00<00:00, 475.28it/s] Evaluation train: 100% 5/5 [00:00<00:00, 819.07it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 818.72it/s] Evaluation test : 100% 2/2 [00:00<00:00, 850.60it/s] Took 0.2376s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.6861 │ 0.6111 │ ├────────────┼────────┼────────────┤ │ vali │ 1.4603 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.6158 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 86 Training: 100% 5/5 [00:00<00:00, 422.43it/s] Evaluation train: 100% 5/5 [00:00<00:00, 795.88it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 786.04it/s] Evaluation test : 100% 2/2 [00:00<00:00, 720.98it/s] Took 0.2584s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.6613 │ 0.6111 │ ├────────────┼────────┼────────────┤ │ vali │ 1.4381 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.5907 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 87 Training: 100% 5/5 [00:00<00:00, 440.43it/s] Evaluation train: 100% 5/5 [00:00<00:00, 795.64it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 722.41it/s] Evaluation test : 100% 2/2 [00:00<00:00, 877.65it/s] Took 0.2490s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.6367 │ 0.6111 │ ├────────────┼────────┼────────────┤ │ vali │ 1.4161 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.5658 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 88 Training: 100% 5/5 [00:00<00:00, 421.30it/s] Evaluation train: 100% 5/5 [00:00<00:00, 774.97it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 791.08it/s] Evaluation test : 100% 2/2 [00:00<00:00, 698.35it/s] Took 0.3407s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.6124 │ 0.6111 │ ├────────────┼────────┼────────────┤ │ vali │ 1.3942 │ 0.6667 │ ├────────────┼────────┼────────────┤ │ test │ 1.5412 │ 0.6778 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 89 Training: 100% 5/5 [00:00<00:00, 430.04it/s] Evaluation train: 100% 5/5 [00:00<00:00, 790.39it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 582.62it/s] Evaluation test : 100% 2/2 [00:00<00:00, 813.48it/s] Took 0.2596s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.5882 │ 0.6111 │ ├────────────┼────────┼────────────┤ │ vali │ 1.3727 │ 0.6790 │ ├────────────┼────────┼────────────┤ │ test │ 1.5168 │ 0.6833 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 90 Training: 100% 5/5 [00:00<00:00, 437.97it/s] Evaluation train: 100% 5/5 [00:00<00:00, 767.60it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 649.37it/s] Evaluation test : 100% 2/2 [00:00<00:00, 787.81it/s] Took 0.2602s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.5642 │ 0.6159 │ ├────────────┼────────┼────────────┤ │ vali │ 1.3513 │ 0.6790 │ ├────────────┼────────┼────────────┤ │ test │ 1.4927 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 91 Training: 100% 5/5 [00:00<00:00, 457.56it/s] Evaluation train: 100% 5/5 [00:00<00:00, 743.46it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 829.24it/s] Evaluation test : 100% 2/2 [00:00<00:00, 845.71it/s] Took 0.2483s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.5405 │ 0.6175 │ ├────────────┼────────┼────────────┤ │ vali │ 1.3302 │ 0.6914 │ ├────────────┼────────┼────────────┤ │ test │ 1.4688 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 92 Training: 100% 5/5 [00:00<00:00, 440.29it/s] Evaluation train: 100% 5/5 [00:00<00:00, 706.11it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 718.57it/s] Evaluation test : 100% 2/2 [00:00<00:00, 856.50it/s] Took 0.2597s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.5169 │ 0.6365 │ ├────────────┼────────┼────────────┤ │ vali │ 1.3093 │ 0.7037 │ ├────────────┼────────┼────────────┤ │ test │ 1.4452 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 93 Training: 100% 5/5 [00:00<00:00, 384.35it/s] Evaluation train: 100% 5/5 [00:00<00:00, 760.47it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 800.44it/s] Evaluation test : 100% 2/2 [00:00<00:00, 839.62it/s] Took 0.2693s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.4936 │ 0.6524 │ ├────────────┼────────┼────────────┤ │ vali │ 1.2886 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.4218 │ 0.6944 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 94 Training: 100% 5/5 [00:00<00:00, 459.83it/s] Evaluation train: 100% 5/5 [00:00<00:00, 770.96it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 817.44it/s] Evaluation test : 100% 2/2 [00:00<00:00, 846.82it/s] Took 0.2464s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.4705 │ 0.6524 │ ├────────────┼────────┼────────────┤ │ vali │ 1.2682 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.3987 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 95 Training: 100% 5/5 [00:00<00:00, 468.25it/s] Evaluation train: 100% 5/5 [00:00<00:00, 748.80it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 863.56it/s] Evaluation test : 100% 2/2 [00:00<00:00, 848.36it/s] Took 0.2432s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.4476 │ 0.6540 │ ├────────────┼────────┼────────────┤ │ vali │ 1.2481 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.3758 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 96 Training: 100% 5/5 [00:00<00:00, 444.56it/s] Evaluation train: 100% 5/5 [00:00<00:00, 790.66it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 829.73it/s] Evaluation test : 100% 2/2 [00:00<00:00, 729.89it/s] Took 0.2514s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.4249 │ 0.6524 │ ├────────────┼────────┼────────────┤ │ vali │ 1.2282 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.3531 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 97 Training: 100% 5/5 [00:00<00:00, 433.12it/s] Evaluation train: 100% 5/5 [00:00<00:00, 751.99it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 810.65it/s] Evaluation test : 100% 2/2 [00:00<00:00, 832.29it/s] Took 0.2544s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.4025 │ 0.6508 │ ├────────────┼────────┼────────────┤ │ vali │ 1.2085 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.3308 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 98 Training: 100% 5/5 [00:00<00:00, 475.64it/s] Evaluation train: 100% 5/5 [00:00<00:00, 804.34it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 804.59it/s] Evaluation test : 100% 2/2 [00:00<00:00, 834.60it/s] Took 0.2385s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.3804 │ 0.6540 │ ├────────────┼────────┼────────────┤ │ vali │ 1.1891 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.3087 │ 0.6944 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 99 Training: 100% 5/5 [00:00<00:00, 468.49it/s] Evaluation train: 100% 5/5 [00:00<00:00, 713.03it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 772.57it/s] Evaluation test : 100% 2/2 [00:00<00:00, 819.92it/s] Took 0.2515s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.3584 │ 0.6540 │ ├────────────┼────────┼────────────┤ │ vali │ 1.1699 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.2868 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Epoch 100 Training: 100% 5/5 [00:00<00:00, 412.88it/s] Evaluation train: 100% 5/5 [00:00<00:00, 788.17it/s] Evaluation vali : 100% 1/1 [00:00<00:00, 792.72it/s] Evaluation test : 100% 2/2 [00:00<00:00, 849.48it/s] Took 0.2582s ╒════════════╤════════╤════════════╕ │ Survived │ loss │ accuracy │ ╞════════════╪════════╪════════════╡ │ train │ 1.3368 │ 0.6540 │ ├────────────┼────────┼────────────┤ │ vali │ 1.1510 │ 0.7160 │ ├────────────┼────────┼────────────┤ │ test │ 1.2652 │ 0.6889 │ ╘════════════╧════════╧════════════╛ Validation loss on combined improved, model saved

Best validation model epoch: 100 Best validation model loss on validation set combined: 1.1510242415063174 Best validation model loss on test set combined: 1.2652276780870226

╒═════════╕ │ PREDICT │ ╘═════════╛

Evaluation: 100% 2/2 [00:00<00:00, 50.27it/s]

===== Survived ===== accuracy: 0.6888888888888889 average_precision_macro: 0.6052279888757147 average_precision_micro: 0.6052279888757147 average_precision_samples: 0.6052279888757147 loss: 1.2652276780870226 overall_stats: { ‘avg_f1_score_macro’: 0.68, ‘avg_f1_score_micro’: 0.6888888888888889, ‘avg_f1_score_weighted’: 0.6948148148148149, ‘avg_precision_macro’: 0.681733746130031, ‘avg_precision_micro’: 0.6888888888888889, ‘avg_precision_weighted’: 0.6888888888888889, ‘avg_recall_macro’: 0.6963210702341137, ‘avg_recall_micro’: 0.6888888888888889, ‘avg_recall_weighted’: 0.6888888888888889, ‘kappa_score’: 0.36802507836990594, ‘overall_accuracy’: 0.6888888888888889} per_class_stats: {False: { ‘accuracy’: 0.6888888888888889, ‘f1_score’: 0.7333333333333334, ‘fall_out’: 0.44705882352941173, ‘false_discovery_rate’: 0.33043478260869563, ‘false_negative_rate’: 0.18947368421052635, ‘false_negatives’: 18, ‘false_omission_rate’: 0.27692307692307694, ‘false_positive_rate’: 0.44705882352941173, ‘false_positives’: 38, ‘hit_rate’: 0.8105263157894737, ‘informedness’: 0.36346749226006203, ‘markedness’: 0.39264214046822743, ‘matthews_correlation_coefficient’: 0.377773284062822, ‘miss_rate’: 0.18947368421052635, ‘negative_predictive_value’: 0.7230769230769231, ‘positive_predictive_value’: 0.6695652173913044, ‘precision’: 0.6695652173913044, ‘recall’: 0.8105263157894737, ‘sensitivity’: 0.8105263157894737, ‘specificity’: 0.5529411764705883, ‘true_negative_rate’: 0.5529411764705883, ‘true_negatives’: 47, ‘true_positive_rate’: 0.8105263157894737, ‘true_positives’: 77}, True: { ‘accuracy’: 0.6888888888888889, ‘f1_score’: 0.6266666666666667, ‘fall_out’: 0.18947368421052635, ‘false_discovery_rate’: 0.27692307692307694, ‘false_negative_rate’: 0.44705882352941173, ‘false_negatives’: 38, ‘false_omission_rate’: 0.33043478260869563, ‘false_positive_rate’: 0.18947368421052635, ‘false_positives’: 18, ‘hit_rate’: 0.5529411764705883, ‘informedness’: 0.36346749226006203, ‘markedness’: 0.39264214046822743, ‘matthews_correlation_coefficient’: 0.377773284062822, ‘miss_rate’: 0.44705882352941173, ‘negative_predictive_value’: 0.6695652173913044, ‘positive_predictive_value’: 0.7230769230769231, ‘precision’: 0.7230769230769231, ‘recall’: 0.5529411764705883, ‘sensitivity’: 0.5529411764705883, ‘specificity’: 0.8105263157894737, ‘true_negative_rate’: 0.8105263157894737, ‘true_negatives’: 77, ‘true_positive_rate’: 0.5529411764705883, ‘true_positives’: 47}} precision_recall_curve: { ‘precisions’: [ 0.39156626506024095, 0.3878787878787879, 0.3902439024390244, 0.39263803680981596, 0.3950617283950617, 0.39751552795031053, 0.4, 0.4025157232704403, 0.4050632911392405, 0.40764331210191085, 0.40384615384615385, 0.4064516129032258, 0.4090909090909091, 0.4117647058823529, 0.4144736842105263, 0.41721854304635764, 0.42, 0.4161073825503356, 0.4189189189189189, 0.4217687074829932, 0.4246575342465753, 0.42758620689655175, 0.4305555555555556, 0.43356643356643354, 0.43661971830985913, 0.4326241134751773, 0.4357142857142857, 0.43884892086330934, 0.4420289855072464, 0.44525547445255476, 0.4485294117647059, 0.45185185185185184, 0.4552238805970149, 0.45864661654135336, 0.4621212121212121, 0.4580152671755725, 0.46153846153846156, 0.46511627906976744, 0.46875, 0.47244094488188976, 0.47619047619047616, 0.48, 0.4838709677419355, 0.4878048780487805, 0.4918032786885246, 0.49586776859504134, 0.49166666666666664, 0.4957983193277311, 0.5, 0.5042735042735043, 0.5086206896551724, 0.5130434782608696, 0.5175438596491229, 0.5132743362831859, 0.5178571428571429, 0.5135135135135135, 0.509090909090909, 0.5045871559633027, 0.5092592592592593, 0.514018691588785, 0.5094339622641509, 0.5142857142857142, 0.5192307692307693, 0.5242718446601942, 0.5196078431372549, 0.5247524752475248, 0.53, 0.5353535353535354, 0.5408163265306123, 0.5463917525773195, 0.5520833333333334, 0.5473684210526316, 0.5425531914893617, 0.5483870967741935, 0.5604395604395604, 0.5555555555555556, 0.550561797752809, 0.5568181818181818, 0.5517241379310345, 0.5581395348837209, 0.5529411764705883, 0.5476190476190477, 0.5542168674698795, 0.5609756097560976, 0.5679012345679012, 0.575, 0.569620253164557, 0.5641025641025641, 0.5584415584415584, 0.5526315789473685, 0.56, 0.5833333333333334, 0.5915492957746479, 0.5857142857142857, 0.5942028985507246, 0.5970149253731343, 0.6060606060606061, 0.6, 0.59375, 0.6031746031746031, 0.5967741935483871, 0.5901639344262295, 0.6, 0.5932203389830508, 0.603448275862069, 0.5964912280701754, 0.6071428571428571, 0.6181818181818182, 0.6296296296296297, 0.6153846153846154, 0.6078431372549019, 0.62, 0.6122448979591837, 0.6041666666666666, 0.6170212765957447, 0.6086956521739131, 0.6, 0.6136363636363636, 0.627906976744186, 0.6190476190476191, 0.6097560975609756, 0.625, 0.6153846153846154, 0.631578947368421, 0.6216216216216216, 0.6111111111111112, 0.6285714285714286, 0.6470588235294118, 0.6363636363636364, 0.625, 0.6451612903225806, 0.6333333333333333, 0.6206896551724138, 0.6428571428571429, 0.6666666666666666, 0.6538461538461539, 0.64, 0.625, 0.6521739130434783, 0.6363636363636364, 0.6190476190476191, 0.65, 0.631578947368421, 0.6111111111111112, 0.6470588235294118, 0.625, 0.6666666666666666, 0.7142857142857143, 0.7692307692307693, 0.75, 0.8181818181818182, 0.8, 0.7777777777777778, 0.75, 0.7142857142857143, 1.0], ‘recalls’: [ 1.0, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.8923076923076924, 0.8923076923076924, 0.8769230769230769, 0.8615384615384616, 0.8461538461538461, 0.8461538461538461, 0.8461538461538461, 0.8307692307692308, 0.8307692307692308, 0.8307692307692308, 0.8307692307692308, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8, 0.7846153846153846, 0.7846153846153846, 0.7846153846153846, 0.7692307692307693, 0.7538461538461538, 0.7538461538461538, 0.7384615384615385, 0.7384615384615385, 0.7230769230769231, 0.7076923076923077, 0.7076923076923077, 0.7076923076923077, 0.7076923076923077, 0.7076923076923077, 0.6923076923076923, 0.676923076923077, 0.6615384615384615, 0.6461538461538462, 0.6461538461538462, 0.6461538461538462, 0.6461538461538462, 0.6307692307692307, 0.6307692307692307, 0.6153846153846154, 0.6153846153846154, 0.6, 0.5846153846153846, 0.5846153846153846, 0.5692307692307692, 0.5538461538461539, 0.5538461538461539, 0.5384615384615384, 0.5384615384615384, 0.5230769230769231, 0.5230769230769231, 0.5230769230769231, 0.5230769230769231, 0.49230769230769234, 0.47692307692307695, 0.47692307692307695, 0.46153846153846156, 0.4461538461538462, 0.4461538461538462, 0.4307692307692308, 0.4153846153846154, 0.4153846153846154, 0.4153846153846154, 0.4, 0.38461538461538464, 0.38461538461538464, 0.36923076923076925, 0.36923076923076925, 0.35384615384615387, 0.3384615384615385, 0.3384615384615385, 0.3384615384615385, 0.3230769230769231, 0.3076923076923077, 0.3076923076923077, 0.2923076923076923, 0.27692307692307694, 0.27692307692307694, 0.27692307692307694, 0.26153846153846155, 0.24615384615384617, 0.23076923076923078, 0.23076923076923078, 0.2153846153846154, 0.2, 0.2, 0.18461538461538463, 0.16923076923076924, 0.16923076923076924, 0.15384615384615385, 0.15384615384615385, 0.15384615384615385, 0.15384615384615385, 0.13846153846153847, 0.13846153846153847, 0.12307692307692308, 0.1076923076923077, 0.09230769230769231, 0.07692307692307693, 0.0]} roc_auc_macro: 0.7635451505016722 roc_auc_micro: 0.7635451505016722

Finished: experiment_run Saved to: results/experiment_run_0

</div>
</div>
</div>



<div markdown="1" class="cell code_cell">
<div class="input_area" markdown="1">

!ludwig visualize –visualization learning_curves –training_statistics results/experiment_run_0/training_statistics.json

</div>

<div class="output_wrapper" markdown="1">
<div class="output_subarea" markdown="1">
{:.output_stream}

WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:

  • https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  • https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue.

<Figure size 800x550 with 1 Axes> <Figure size 800x550 with 1 Axes> <Figure size 800x550 with 1 Axes> <Figure size 800x550 with 1 Axes>

</div>
</div>
</div>



<div markdown="1" class="cell code_cell">
<div class="input_area" markdown="1">
```!cd results/experiment_run_0/ &&ls

description.json	    Survived_predictions.npy
model			    Survived_probabilities.csv
prediction_statistics.json  Survived_probabilities.npy
Survived_predictions.csv    training_statistics.json

```!ludwig predict –data_csv train.csv –model_path results/experiment_run_0/model/

</div>

<div class="output_wrapper" markdown="1">
<div class="output_subarea" markdown="1">
{:.output_stream}

WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see:

  • https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  • https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue.

| |_ _ | |_ __ () _ | | || / \ V V / / _ | ||_,_,|_/_/|_, | |__/ ludwig v0.1.1 - Predict

Dataset type: generic Dataset path: train.csv Model path: results/experiment_run_0/model/ Output path: results_0

Found hdf5 with the same filename of the csv, using it instead Loading metadata from: results/experiment_run_0/model/train_set_metadata.json Loading data from: train.hdf5

╒═══════════════╕ │ LOADING MODEL │ ╘═══════════════╛

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. embedding_size (50) is greater than vocab_size (4). Setting embedding size to be equal to vocab_size. embedding_size (50) is greater than vocab_size (3). Setting embedding size to be equal to vocab_size. embedding_size (50) is greater than vocab_size (5). Setting embedding size to be equal to vocab_size. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/array_grad.py:425: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead.

╒═════════╕ │ PREDICT │ ╘═════════╛

2019-04-15 15:03:29.611185: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2300000000 Hz 2019-04-15 15:03:29.611485: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x2bfcc00 executing computations on platform Host. Devices: 2019-04-15 15:03:29.611522: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): , WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to check for files with this prefix. INFO:tensorflow:Restoring parameters from results/experiment_run_0/model/model_weights Restoring parameters from results/experiment_run_0/model/model_weights Evaluation: 100% 2/2 [00:00<00:00, 64.62it/s]

===== Survived ===== accuracy: 0.6888888888888889 average_precision_macro: 0.6052279888757147 average_precision_micro: 0.6052279888757147 average_precision_samples: 0.6052279888757147 loss: 1.2652276780870226 overall_stats: { ‘avg_f1_score_macro’: 0.68, ‘avg_f1_score_micro’: 0.6888888888888889, ‘avg_f1_score_weighted’: 0.6948148148148149, ‘avg_precision_macro’: 0.681733746130031, ‘avg_precision_micro’: 0.6888888888888889, ‘avg_precision_weighted’: 0.6888888888888889, ‘avg_recall_macro’: 0.6963210702341137, ‘avg_recall_micro’: 0.6888888888888889, ‘avg_recall_weighted’: 0.6888888888888889, ‘kappa_score’: 0.36802507836990594, ‘overall_accuracy’: 0.6888888888888889} per_class_stats: {False: { ‘accuracy’: 0.6888888888888889, ‘f1_score’: 0.7333333333333334, ‘fall_out’: 0.44705882352941173, ‘false_discovery_rate’: 0.33043478260869563, ‘false_negative_rate’: 0.18947368421052635, ‘false_negatives’: 18, ‘false_omission_rate’: 0.27692307692307694, ‘false_positive_rate’: 0.44705882352941173, ‘false_positives’: 38, ‘hit_rate’: 0.8105263157894737, ‘informedness’: 0.36346749226006203, ‘markedness’: 0.39264214046822743, ‘matthews_correlation_coefficient’: 0.377773284062822, ‘miss_rate’: 0.18947368421052635, ‘negative_predictive_value’: 0.7230769230769231, ‘positive_predictive_value’: 0.6695652173913044, ‘precision’: 0.6695652173913044, ‘recall’: 0.8105263157894737, ‘sensitivity’: 0.8105263157894737, ‘specificity’: 0.5529411764705883, ‘true_negative_rate’: 0.5529411764705883, ‘true_negatives’: 47, ‘true_positive_rate’: 0.8105263157894737, ‘true_positives’: 77}, True: { ‘accuracy’: 0.6888888888888889, ‘f1_score’: 0.6266666666666667, ‘fall_out’: 0.18947368421052635, ‘false_discovery_rate’: 0.27692307692307694, ‘false_negative_rate’: 0.44705882352941173, ‘false_negatives’: 38, ‘false_omission_rate’: 0.33043478260869563, ‘false_positive_rate’: 0.18947368421052635, ‘false_positives’: 18, ‘hit_rate’: 0.5529411764705883, ‘informedness’: 0.36346749226006203, ‘markedness’: 0.39264214046822743, ‘matthews_correlation_coefficient’: 0.377773284062822, ‘miss_rate’: 0.44705882352941173, ‘negative_predictive_value’: 0.6695652173913044, ‘positive_predictive_value’: 0.7230769230769231, ‘precision’: 0.7230769230769231, ‘recall’: 0.5529411764705883, ‘sensitivity’: 0.5529411764705883, ‘specificity’: 0.8105263157894737, ‘true_negative_rate’: 0.8105263157894737, ‘true_negatives’: 77, ‘true_positive_rate’: 0.5529411764705883, ‘true_positives’: 47}} precision_recall_curve: { ‘precisions’: [ 0.39156626506024095, 0.3878787878787879, 0.3902439024390244, 0.39263803680981596, 0.3950617283950617, 0.39751552795031053, 0.4, 0.4025157232704403, 0.4050632911392405, 0.40764331210191085, 0.40384615384615385, 0.4064516129032258, 0.4090909090909091, 0.4117647058823529, 0.4144736842105263, 0.41721854304635764, 0.42, 0.4161073825503356, 0.4189189189189189, 0.4217687074829932, 0.4246575342465753, 0.42758620689655175, 0.4305555555555556, 0.43356643356643354, 0.43661971830985913, 0.4326241134751773, 0.4357142857142857, 0.43884892086330934, 0.4420289855072464, 0.44525547445255476, 0.4485294117647059, 0.45185185185185184, 0.4552238805970149, 0.45864661654135336, 0.4621212121212121, 0.4580152671755725, 0.46153846153846156, 0.46511627906976744, 0.46875, 0.47244094488188976, 0.47619047619047616, 0.48, 0.4838709677419355, 0.4878048780487805, 0.4918032786885246, 0.49586776859504134, 0.49166666666666664, 0.4957983193277311, 0.5, 0.5042735042735043, 0.5086206896551724, 0.5130434782608696, 0.5175438596491229, 0.5132743362831859, 0.5178571428571429, 0.5135135135135135, 0.509090909090909, 0.5045871559633027, 0.5092592592592593, 0.514018691588785, 0.5094339622641509, 0.5142857142857142, 0.5192307692307693, 0.5242718446601942, 0.5196078431372549, 0.5247524752475248, 0.53, 0.5353535353535354, 0.5408163265306123, 0.5463917525773195, 0.5520833333333334, 0.5473684210526316, 0.5425531914893617, 0.5483870967741935, 0.5604395604395604, 0.5555555555555556, 0.550561797752809, 0.5568181818181818, 0.5517241379310345, 0.5581395348837209, 0.5529411764705883, 0.5476190476190477, 0.5542168674698795, 0.5609756097560976, 0.5679012345679012, 0.575, 0.569620253164557, 0.5641025641025641, 0.5584415584415584, 0.5526315789473685, 0.56, 0.5833333333333334, 0.5915492957746479, 0.5857142857142857, 0.5942028985507246, 0.5970149253731343, 0.6060606060606061, 0.6, 0.59375, 0.6031746031746031, 0.5967741935483871, 0.5901639344262295, 0.6, 0.5932203389830508, 0.603448275862069, 0.5964912280701754, 0.6071428571428571, 0.6181818181818182, 0.6296296296296297, 0.6153846153846154, 0.6078431372549019, 0.62, 0.6122448979591837, 0.6041666666666666, 0.6170212765957447, 0.6086956521739131, 0.6, 0.6136363636363636, 0.627906976744186, 0.6190476190476191, 0.6097560975609756, 0.625, 0.6153846153846154, 0.631578947368421, 0.6216216216216216, 0.6111111111111112, 0.6285714285714286, 0.6470588235294118, 0.6363636363636364, 0.625, 0.6451612903225806, 0.6333333333333333, 0.6206896551724138, 0.6428571428571429, 0.6666666666666666, 0.6538461538461539, 0.64, 0.625, 0.6521739130434783, 0.6363636363636364, 0.6190476190476191, 0.65, 0.631578947368421, 0.6111111111111112, 0.6470588235294118, 0.625, 0.6666666666666666, 0.7142857142857143, 0.7692307692307693, 0.75, 0.8181818181818182, 0.8, 0.7777777777777778, 0.75, 0.7142857142857143, 1.0], ‘recalls’: [ 1.0, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9846153846153847, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9692307692307692, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9538461538461539, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9384615384615385, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9230769230769231, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.9076923076923077, 0.8923076923076924, 0.8923076923076924, 0.8769230769230769, 0.8615384615384616, 0.8461538461538461, 0.8461538461538461, 0.8461538461538461, 0.8307692307692308, 0.8307692307692308, 0.8307692307692308, 0.8307692307692308, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8153846153846154, 0.8, 0.7846153846153846, 0.7846153846153846, 0.7846153846153846, 0.7692307692307693, 0.7538461538461538, 0.7538461538461538, 0.7384615384615385, 0.7384615384615385, 0.7230769230769231, 0.7076923076923077, 0.7076923076923077, 0.7076923076923077, 0.7076923076923077, 0.7076923076923077, 0.6923076923076923, 0.676923076923077, 0.6615384615384615, 0.6461538461538462, 0.6461538461538462, 0.6461538461538462, 0.6461538461538462, 0.6307692307692307, 0.6307692307692307, 0.6153846153846154, 0.6153846153846154, 0.6, 0.5846153846153846, 0.5846153846153846, 0.5692307692307692, 0.5538461538461539, 0.5538461538461539, 0.5384615384615384, 0.5384615384615384, 0.5230769230769231, 0.5230769230769231, 0.5230769230769231, 0.5230769230769231, 0.49230769230769234, 0.47692307692307695, 0.47692307692307695, 0.46153846153846156, 0.4461538461538462, 0.4461538461538462, 0.4307692307692308, 0.4153846153846154, 0.4153846153846154, 0.4153846153846154, 0.4, 0.38461538461538464, 0.38461538461538464, 0.36923076923076925, 0.36923076923076925, 0.35384615384615387, 0.3384615384615385, 0.3384615384615385, 0.3384615384615385, 0.3230769230769231, 0.3076923076923077, 0.3076923076923077, 0.2923076923076923, 0.27692307692307694, 0.27692307692307694, 0.27692307692307694, 0.26153846153846155, 0.24615384615384617, 0.23076923076923078, 0.23076923076923078, 0.2153846153846154, 0.2, 0.2, 0.18461538461538463, 0.16923076923076924, 0.16923076923076924, 0.15384615384615385, 0.15384615384615385, 0.15384615384615385, 0.15384615384615385, 0.13846153846153847, 0.13846153846153847, 0.12307692307692308, 0.1076923076923077, 0.09230769230769231, 0.07692307692307693, 0.0]} roc_auc_macro: 0.7635451505016722 roc_auc_micro: 0.7635451505016722 Saved to: results_0

</div>
</div>
</div>



<div markdown="1" class="cell code_cell">
<div class="input_area" markdown="1">
```!ls results/experiment_run_0/model/


checkpoint			   model_weights_progress.data-00000-of-00001
log				   model_weights_progress.index
model_hyperparameters.json	   model_weights_progress.meta
model_weights.data-00000-of-00001  training_progress.p
model_weights.index		   train_set_metadata.json
model_weights.meta