Chapter 17 – Autoencoders and GANs

This notebook contains all the sample code in chapter 17.

Run in Google Colab

Setup

First, let’s import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0.

# Python ≥3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Scikit-Learn ≥0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"

try:
    # %tensorflow_version only exists in Colab.
    %tensorflow_version 2.x
    IS_COLAB = True
except Exception:
    IS_COLAB = False

# TensorFlow ≥2.0 is required
import tensorflow as tf
from tensorflow import keras
assert tf.__version__ >= "2.0"

if not tf.test.is_gpu_available():
    print("No GPU was detected. LSTMs and CNNs can be very slow without a GPU.")
    if IS_COLAB:
        print("Go to Runtime > Change runtime and select a GPU hardware accelerator.")

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
np.random.seed(42)
tf.random.set_seed(42)

# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "autoencoders"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
    path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format=fig_extension, dpi=resolution)

A couple utility functions to plot grayscale 28x28 image:

def plot_image(image):
    plt.imshow(image, cmap="binary")
    plt.axis("off")

PCA with a linear Autoencoder

Build 3D dataset:

np.random.seed(4)

def generate_3d_data(m, w1=0.1, w2=0.3, noise=0.1):
    angles = np.random.rand(m) * 3 * np.pi / 2 - 0.5
    data = np.empty((m, 3))
    data[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * np.random.randn(m) / 2
    data[:, 1] = np.sin(angles) * 0.7 + noise * np.random.randn(m) / 2
    data[:, 2] = data[:, 0] * w1 + data[:, 1] * w2 + noise * np.random.randn(m)
    return data

X_train = generate_3d_data(60)
X_train = X_train - X_train.mean(axis=0, keepdims=0)

Now let’s build the Autoencoder…

np.random.seed(42)
tf.random.set_seed(42)

encoder = keras.models.Sequential([keras.layers.Dense(2, input_shape=[3])])
decoder = keras.models.Sequential([keras.layers.Dense(3, input_shape=[2])])
autoencoder = keras.models.Sequential([encoder, decoder])

autoencoder.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1.5))

history = autoencoder.fit(X_train, X_train, epochs=20)

Train on 60 samples
Epoch 1/20
60/60 [==============================] - 0s 1ms/sample - loss: 0.2648
Epoch 2/20
60/60 [==============================] - 0s 49us/sample - loss: 0.1317
Epoch 3/20
60/60 [==============================] - 0s 50us/sample - loss: 0.0778
Epoch 4/20
60/60 [==============================] - 0s 46us/sample - loss: 0.0655
Epoch 5/20
60/60 [==============================] - 0s 51us/sample - loss: 0.0748
Epoch 6/20
60/60 [==============================] - 0s 47us/sample - loss: 0.1039
Epoch 7/20
60/60 [==============================] - 0s 50us/sample - loss: 0.1262
Epoch 8/20
60/60 [==============================] - 0s 52us/sample - loss: 0.0536
Epoch 9/20
60/60 [==============================] - 0s 51us/sample - loss: 0.0208
Epoch 10/20
60/60 [==============================] - 0s 52us/sample - loss: 0.0146
Epoch 11/20
60/60 [==============================] - 0s 52us/sample - loss: 0.0097
Epoch 12/20
60/60 [==============================] - 0s 48us/sample - loss: 0.0076
Epoch 13/20
60/60 [==============================] - 0s 43us/sample - loss: 0.0067
Epoch 14/20
60/60 [==============================] - 0s 49us/sample - loss: 0.0070
Epoch 15/20
60/60 [==============================] - 0s 58us/sample - loss: 0.0061
Epoch 16/20
60/60 [==============================] - 0s 53us/sample - loss: 0.0055
Epoch 17/20
60/60 [==============================] - 0s 63us/sample - loss: 0.0056
Epoch 18/20
60/60 [==============================] - 0s 58us/sample - loss: 0.0055
Epoch 19/20
60/60 [==============================] - 0s 64us/sample - loss: 0.0054
Epoch 20/20
60/60 [==============================] - 0s 55us/sample - loss: 0.0055
codings = encoder.predict(X_train)

fig = plt.figure(figsize=(4,3))
plt.plot(codings[:,0], codings[:, 1], "b.")
plt.xlabel("$z_1$", fontsize=18)
plt.ylabel("$z_2$", fontsize=18, rotation=0)
plt.grid(True)
save_fig("linear_autoencoder_pca_plot")
plt.show()

Saving figure linear_autoencoder_pca_plot

png

Stacked Autoencoders

Let’s use MNIST:

(X_train_full, y_train_full), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()
X_train_full = X_train_full.astype(np.float32) / 255
X_test = X_test.astype(np.float32) / 255
X_train, X_valid = X_train_full[:-5000], X_train_full[-5000:]
y_train, y_valid = y_train_full[:-5000], y_train_full[-5000:]

Train all layers at once

Let’s build a stacked Autoencoder with 3 hidden layers and 1 output layer (i.e., 2 stacked Autoencoders).

def rounded_accuracy(y_true, y_pred):
    return keras.metrics.binary_accuracy(tf.round(y_true), tf.round(y_pred))

tf.random.set_seed(42)
np.random.seed(42)

stacked_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(30, activation="selu"),
])
stacked_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[30]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
stacked_ae = keras.models.Sequential([stacked_encoder, stacked_decoder])
stacked_ae.compile(loss="binary_crossentropy",
                   optimizer=keras.optimizers.SGD(lr=1.5), metrics=[rounded_accuracy])
history = stacked_ae.fit(X_train, X_train, epochs=20,
                         validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/20
55000/55000 [==============================] - 4s 72us/sample - loss: 0.3386 - rounded_accuracy: 0.8866 - val_loss: 0.3118 - val_rounded_accuracy: 0.9128
Epoch 2/20
55000/55000 [==============================] - 4s 64us/sample - loss: 0.3055 - rounded_accuracy: 0.9153 - val_loss: 0.3030 - val_rounded_accuracy: 0.9200
Epoch 3/20
55000/55000 [==============================] - 4s 68us/sample - loss: 0.2986 - rounded_accuracy: 0.9214 - val_loss: 0.2982 - val_rounded_accuracy: 0.9249
Epoch 4/20
55000/55000 [==============================] - 4s 67us/sample - loss: 0.2946 - rounded_accuracy: 0.9251 - val_loss: 0.2938 - val_rounded_accuracy: 0.9284
Epoch 5/20
55000/55000 [==============================] - 4s 70us/sample - loss: 0.2921 - rounded_accuracy: 0.9273 - val_loss: 0.2922 - val_rounded_accuracy: 0.9302
Epoch 6/20
55000/55000 [==============================] - 4s 69us/sample - loss: 0.2904 - rounded_accuracy: 0.9289 - val_loss: 0.2917 - val_rounded_accuracy: 0.9304
Epoch 7/20
55000/55000 [==============================] - 4s 72us/sample - loss: 0.2889 - rounded_accuracy: 0.9303 - val_loss: 0.2901 - val_rounded_accuracy: 0.9313
Epoch 8/20
55000/55000 [==============================] - 4s 66us/sample - loss: 0.2878 - rounded_accuracy: 0.9311 - val_loss: 0.2884 - val_rounded_accuracy: 0.9324
Epoch 9/20
55000/55000 [==============================] - 4s 68us/sample - loss: 0.2869 - rounded_accuracy: 0.9319 - val_loss: 0.2879 - val_rounded_accuracy: 0.9321
Epoch 10/20
55000/55000 [==============================] - 4s 69us/sample - loss: 0.2860 - rounded_accuracy: 0.9326 - val_loss: 0.2874 - val_rounded_accuracy: 0.9328
Epoch 11/20
55000/55000 [==============================] - 4s 71us/sample - loss: 0.2854 - rounded_accuracy: 0.9331 - val_loss: 0.2873 - val_rounded_accuracy: 0.9313
Epoch 12/20
55000/55000 [==============================] - 4s 72us/sample - loss: 0.2847 - rounded_accuracy: 0.9336 - val_loss: 0.2872 - val_rounded_accuracy: 0.9299
Epoch 13/20
55000/55000 [==============================] - 4s 65us/sample - loss: 0.2841 - rounded_accuracy: 0.9341 - val_loss: 0.2863 - val_rounded_accuracy: 0.9311
Epoch 14/20
55000/55000 [==============================] - 4s 67us/sample - loss: 0.2837 - rounded_accuracy: 0.9344 - val_loss: 0.2846 - val_rounded_accuracy: 0.9348
Epoch 15/20
55000/55000 [==============================] - 4s 65us/sample - loss: 0.2832 - rounded_accuracy: 0.9348 - val_loss: 0.2842 - val_rounded_accuracy: 0.9344
Epoch 16/20
55000/55000 [==============================] - 4s 66us/sample - loss: 0.2827 - rounded_accuracy: 0.9352 - val_loss: 0.2850 - val_rounded_accuracy: 0.9359
Epoch 17/20
55000/55000 [==============================] - 4s 65us/sample - loss: 0.2823 - rounded_accuracy: 0.9355 - val_loss: 0.2841 - val_rounded_accuracy: 0.9363
Epoch 18/20
55000/55000 [==============================] - 4s 65us/sample - loss: 0.2820 - rounded_accuracy: 0.9357 - val_loss: 0.2832 - val_rounded_accuracy: 0.9355
Epoch 19/20
55000/55000 [==============================] - 4s 71us/sample - loss: 0.2817 - rounded_accuracy: 0.9360 - val_loss: 0.2858 - val_rounded_accuracy: 0.9361
Epoch 20/20
55000/55000 [==============================] - 4s 76us/sample - loss: 0.2814 - rounded_accuracy: 0.9363 - val_loss: 0.2835 - val_rounded_accuracy: 0.9370

This function processes a few test images through the autoencoder and displays the original images and their reconstructions:

def show_reconstructions(model, images=X_valid, n_images=5):
    reconstructions = model.predict(images[:n_images])
    fig = plt.figure(figsize=(n_images * 1.5, 3))
    for image_index in range(n_images):
        plt.subplot(2, n_images, 1 + image_index)
        plot_image(images[image_index])
        plt.subplot(2, n_images, 1 + n_images + image_index)
        plot_image(reconstructions[image_index])

show_reconstructions(stacked_ae)
save_fig("reconstruction_plot")

Saving figure reconstruction_plot

png

Visualizing Fashion MNIST

np.random.seed(42)

from sklearn.manifold import TSNE

X_valid_compressed = stacked_encoder.predict(X_valid)
tsne = TSNE()
X_valid_2D = tsne.fit_transform(X_valid_compressed)
X_valid_2D = (X_valid_2D - X_valid_2D.min()) / (X_valid_2D.max() - X_valid_2D.min())

plt.scatter(X_valid_2D[:, 0], X_valid_2D[:, 1], c=y_valid, s=10, cmap="tab10")
plt.axis("off")
plt.show()

png

Let’s make this diagram a bit prettier:

# adapted from https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
plt.figure(figsize=(10, 8))
cmap = plt.cm.tab10
plt.scatter(X_valid_2D[:, 0], X_valid_2D[:, 1], c=y_valid, s=10, cmap=cmap)
image_positions = np.array([[1., 1.]])
for index, position in enumerate(X_valid_2D):
    dist = np.sum((position - image_positions) ** 2, axis=1)
    if np.min(dist) > 0.02: # if far enough from other images
        image_positions = np.r_[image_positions, [position]]
        imagebox = mpl.offsetbox.AnnotationBbox(
            mpl.offsetbox.OffsetImage(X_valid[index], cmap="binary"),
            position, bboxprops={"edgecolor": cmap(y_valid[index]), "lw": 2})
        plt.gca().add_artist(imagebox)
plt.axis("off")
save_fig("fashion_mnist_visualization_plot")
plt.show()

Saving figure fashion_mnist_visualization_plot

png

Tying weights

It is common to tie the weights of the encoder and the decoder, by simply using the transpose of the encoder’s weights as the decoder weights. For this, we need to use a custom layer.

class DenseTranspose(keras.layers.Layer):
    def __init__(self, dense, activation=None, **kwargs):
        self.dense = dense
        self.activation = keras.activations.get(activation)
        super().__init__(**kwargs)
    def build(self, batch_input_shape):
        self.biases = self.add_weight(name="bias",
                                      shape=[self.dense.input_shape[-1]],
                                      initializer="zeros")
        super().build(batch_input_shape)
    def call(self, inputs):
        z = tf.matmul(inputs, self.dense.weights[0], transpose_b=True)
        return self.activation(z + self.biases)

keras.backend.clear_session()
tf.random.set_seed(42)
np.random.seed(42)

dense_1 = keras.layers.Dense(100, activation="selu")
dense_2 = keras.layers.Dense(30, activation="selu")

tied_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    dense_1,
    dense_2
])

tied_decoder = keras.models.Sequential([
    DenseTranspose(dense_2, activation="selu"),
    DenseTranspose(dense_1, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])

tied_ae = keras.models.Sequential([tied_encoder, tied_decoder])

tied_ae.compile(loss="binary_crossentropy",
                optimizer=keras.optimizers.SGD(lr=1.5), metrics=[rounded_accuracy])
history = tied_ae.fit(X_train, X_train, epochs=10,
                      validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 4s 80us/sample - loss: 0.3213 - rounded_accuracy: 0.8996 - val_loss: 0.3038 - val_rounded_accuracy: 0.9154
Epoch 2/10
55000/55000 [==============================] - 4s 74us/sample - loss: 0.2967 - rounded_accuracy: 0.9216 - val_loss: 0.2931 - val_rounded_accuracy: 0.9268
Epoch 3/10
55000/55000 [==============================] - 4s 70us/sample - loss: 0.2916 - rounded_accuracy: 0.9263 - val_loss: 0.2929 - val_rounded_accuracy: 0.9254
Epoch 4/10
55000/55000 [==============================] - 4s 64us/sample - loss: 0.2889 - rounded_accuracy: 0.9287 - val_loss: 0.2905 - val_rounded_accuracy: 0.9316
Epoch 5/10
55000/55000 [==============================] - 4s 70us/sample - loss: 0.2871 - rounded_accuracy: 0.9303 - val_loss: 0.2917 - val_rounded_accuracy: 0.9307
Epoch 6/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.2858 - rounded_accuracy: 0.9316 - val_loss: 0.2870 - val_rounded_accuracy: 0.9332
Epoch 7/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.2847 - rounded_accuracy: 0.9327 - val_loss: 0.2865 - val_rounded_accuracy: 0.9336
Epoch 8/10
55000/55000 [==============================] - 4s 71us/sample - loss: 0.2840 - rounded_accuracy: 0.9334 - val_loss: 0.2859 - val_rounded_accuracy: 0.9349
Epoch 9/10
55000/55000 [==============================] - 4s 70us/sample - loss: 0.2834 - rounded_accuracy: 0.9339 - val_loss: 0.2864 - val_rounded_accuracy: 0.9338
Epoch 10/10
55000/55000 [==============================] - 4s 72us/sample - loss: 0.2828 - rounded_accuracy: 0.9345 - val_loss: 0.2839 - val_rounded_accuracy: 0.9338
show_reconstructions(tied_ae)
plt.show()

png

Training one Autoencoder at a time

def train_autoencoder(n_neurons, X_train, X_valid, loss, optimizer,
                      n_epochs=10, output_activation=None, metrics=None):
    n_inputs = X_train.shape[-1]
    encoder = keras.models.Sequential([
        keras.layers.Dense(n_neurons, activation="selu", input_shape=[n_inputs])
    ])
    decoder = keras.models.Sequential([
        keras.layers.Dense(n_inputs, activation=output_activation),
    ])
    autoencoder = keras.models.Sequential([encoder, decoder])
    autoencoder.compile(optimizer, loss, metrics=metrics)
    autoencoder.fit(X_train, X_train, epochs=n_epochs,
                    validation_data=[X_valid, X_valid])
    return encoder, decoder, encoder(X_train), encoder(X_valid)

tf.random.set_seed(42)
np.random.seed(42)

K = keras.backend
X_train_flat = K.batch_flatten(X_train) # equivalent to .reshape(-1, 28 * 28)
X_valid_flat = K.batch_flatten(X_valid)
enc1, dec1, X_train_enc1, X_valid_enc1 = train_autoencoder(
    100, X_train_flat, X_valid_flat, "binary_crossentropy",
    keras.optimizers.SGD(lr=1.5), output_activation="sigmoid",
    metrics=[rounded_accuracy])
enc2, dec2, _, _ = train_autoencoder(
    30, X_train_enc1, X_valid_enc1, "mse", keras.optimizers.SGD(lr=0.05),
    output_activation="selu")

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 4s 73us/sample - loss: 0.3446 - rounded_accuracy: 0.8874 - val_loss: 0.3122 - val_rounded_accuracy: 0.9147
Epoch 2/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.3039 - rounded_accuracy: 0.9204 - val_loss: 0.3006 - val_rounded_accuracy: 0.9241
Epoch 3/10
55000/55000 [==============================] - 4s 69us/sample - loss: 0.2949 - rounded_accuracy: 0.9286 - val_loss: 0.2933 - val_rounded_accuracy: 0.9319
Epoch 4/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.2890 - rounded_accuracy: 0.9343 - val_loss: 0.2887 - val_rounded_accuracy: 0.9362
Epoch 5/10
55000/55000 [==============================] - 4s 72us/sample - loss: 0.2853 - rounded_accuracy: 0.9379 - val_loss: 0.2856 - val_rounded_accuracy: 0.9390
Epoch 6/10
55000/55000 [==============================] - 4s 67us/sample - loss: 0.2826 - rounded_accuracy: 0.9404 - val_loss: 0.2833 - val_rounded_accuracy: 0.9410
Epoch 7/10
55000/55000 [==============================] - 4s 69us/sample - loss: 0.2806 - rounded_accuracy: 0.9424 - val_loss: 0.2816 - val_rounded_accuracy: 0.9430
Epoch 8/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.2791 - rounded_accuracy: 0.9439 - val_loss: 0.2802 - val_rounded_accuracy: 0.9448
Epoch 9/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.2778 - rounded_accuracy: 0.9451 - val_loss: 0.2790 - val_rounded_accuracy: 0.9454
Epoch 10/10
55000/55000 [==============================] - 4s 65us/sample - loss: 0.2768 - rounded_accuracy: 0.9461 - val_loss: 0.2781 - val_rounded_accuracy: 0.9462
Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 2s 35us/sample - loss: 0.5678 - val_loss: 0.2887
Epoch 2/10
55000/55000 [==============================] - 2s 30us/sample - loss: 0.2633 - val_loss: 0.2512
Epoch 3/10
55000/55000 [==============================] - 2s 33us/sample - loss: 0.2237 - val_loss: 0.2115
Epoch 4/10
55000/55000 [==============================] - 2s 33us/sample - loss: 0.2025 - val_loss: 0.1967
Epoch 5/10
55000/55000 [==============================] - 2s 31us/sample - loss: 0.1909 - val_loss: 0.1864
Epoch 6/10
55000/55000 [==============================] - 2s 29us/sample - loss: 0.1824 - val_loss: 0.1734
Epoch 7/10
55000/55000 [==============================] - 2s 31us/sample - loss: 0.1750 - val_loss: 0.1696
Epoch 8/10
55000/55000 [==============================] - 2s 31us/sample - loss: 0.1732 - val_loss: 0.1719
Epoch 9/10
55000/55000 [==============================] - 2s 30us/sample - loss: 0.1711 - val_loss: 0.1917
Epoch 10/10
55000/55000 [==============================] - 2s 29us/sample - loss: 0.1704 - val_loss: 0.1687
stacked_ae_1_by_1 = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    enc1, enc2, dec2, dec1,
    keras.layers.Reshape([28, 28])
])

show_reconstructions(stacked_ae_1_by_1)
plt.show()

png

stacked_ae_1_by_1.compile(loss="binary_crossentropy",
                          optimizer=keras.optimizers.SGD(lr=0.1), metrics=[rounded_accuracy])
history = stacked_ae_1_by_1.fit(X_train, X_train, epochs=10,
                                validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 5s 83us/sample - loss: 0.2853 - rounded_accuracy: 0.9359 - val_loss: 0.2868 - val_rounded_accuracy: 0.9361
Epoch 2/10
55000/55000 [==============================] - 4s 70us/sample - loss: 0.2849 - rounded_accuracy: 0.9363 - val_loss: 0.2866 - val_rounded_accuracy: 0.9364
Epoch 3/10
55000/55000 [==============================] - 4s 66us/sample - loss: 0.2847 - rounded_accuracy: 0.9365 - val_loss: 0.2864 - val_rounded_accuracy: 0.9362
Epoch 4/10
55000/55000 [==============================] - 4s 76us/sample - loss: 0.2846 - rounded_accuracy: 0.9366 - val_loss: 0.2863 - val_rounded_accuracy: 0.9367
Epoch 5/10
55000/55000 [==============================] - 4s 74us/sample - loss: 0.2844 - rounded_accuracy: 0.9368 - val_loss: 0.2862 - val_rounded_accuracy: 0.9369
Epoch 6/10
55000/55000 [==============================] - 4s 66us/sample - loss: 0.2843 - rounded_accuracy: 0.9369 - val_loss: 0.2861 - val_rounded_accuracy: 0.9368
Epoch 7/10
55000/55000 [==============================] - 4s 67us/sample - loss: 0.2842 - rounded_accuracy: 0.9370 - val_loss: 0.2860 - val_rounded_accuracy: 0.9368
Epoch 8/10
55000/55000 [==============================] - 4s 66us/sample - loss: 0.2841 - rounded_accuracy: 0.9371 - val_loss: 0.2859 - val_rounded_accuracy: 0.9369
Epoch 9/10
55000/55000 [==============================] - 4s 67us/sample - loss: 0.2840 - rounded_accuracy: 0.9372 - val_loss: 0.2858 - val_rounded_accuracy: 0.9368
Epoch 10/10
55000/55000 [==============================] - 4s 66us/sample - loss: 0.2839 - rounded_accuracy: 0.9373 - val_loss: 0.2857 - val_rounded_accuracy: 0.9371
show_reconstructions(stacked_ae_1_by_1)
plt.show()

png

Using Convolutional Layers Instead of Dense Layers

Let’s build a stacked Autoencoder with 3 hidden layers and 1 output layer (i.e., 2 stacked Autoencoders).

tf.random.set_seed(42)
np.random.seed(42)

conv_encoder = keras.models.Sequential([
    keras.layers.Reshape([28, 28, 1], input_shape=[28, 28]),
    keras.layers.Conv2D(16, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Conv2D(32, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Conv2D(64, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2)
])
conv_decoder = keras.models.Sequential([
    keras.layers.Conv2DTranspose(32, kernel_size=3, strides=2, padding="VALID", activation="selu",
                                 input_shape=[3, 3, 64]),
    keras.layers.Conv2DTranspose(16, kernel_size=3, strides=2, padding="SAME", activation="selu"),
    keras.layers.Conv2DTranspose(1, kernel_size=3, strides=2, padding="SAME", activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
conv_ae = keras.models.Sequential([conv_encoder, conv_decoder])

conv_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.0),
                metrics=[rounded_accuracy])
history = conv_ae.fit(X_train, X_train, epochs=5,
                      validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/5
55000/55000 [==============================] - 40s 734us/sample - loss: 0.3017 - accuracy: 0.5064 - val_loss: 0.2842 - val_accuracy: 0.5058
Epoch 2/5
55000/55000 [==============================] - 39s 712us/sample - loss: 0.2756 - accuracy: 0.5088 - val_loss: 0.2739 - val_accuracy: 0.5058
Epoch 3/5
55000/55000 [==============================] - 39s 715us/sample - loss: 0.2709 - accuracy: 0.5092 - val_loss: 0.2720 - val_accuracy: 0.5059
Epoch 4/5
55000/55000 [==============================] - 39s 707us/sample - loss: 0.2682 - accuracy: 0.5094 - val_loss: 0.2685 - val_accuracy: 0.5063
Epoch 5/5
55000/55000 [==============================] - 39s 706us/sample - loss: 0.2665 - accuracy: 0.5095 - val_loss: 0.2671 - val_accuracy: 0.5066
conv_encoder.summary()
conv_decoder.summary()

Model: "sequential_16"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
reshape_3 (Reshape)          (None, 28, 28, 1)         0         
_________________________________________________________________
conv2d (Conv2D)              (None, 28, 28, 16)        160       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 16)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 14, 14, 32)        4640      
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 32)          0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 7, 7, 64)          18496     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 3, 3, 64)          0         
=================================================================
Total params: 23,296
Trainable params: 23,296
Non-trainable params: 0
_________________________________________________________________
Model: "sequential_17"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_transpose (Conv2DTran (None, 7, 7, 32)          18464     
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 14, 14, 16)        4624      
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 28, 28, 1)         145       
_________________________________________________________________
reshape_4 (Reshape)          (None, 28, 28)            0         
=================================================================
Total params: 23,233
Trainable params: 23,233
Non-trainable params: 0
_________________________________________________________________
show_reconstructions(conv_ae)
plt.show()

png

Recurrent Autoencoders

recurrent_encoder = keras.models.Sequential([
    keras.layers.LSTM(100, return_sequences=True, input_shape=[28, 28]),
    keras.layers.LSTM(30)
])
recurrent_decoder = keras.models.Sequential([
    keras.layers.RepeatVector(28, input_shape=[30]),
    keras.layers.LSTM(100, return_sequences=True),
    keras.layers.TimeDistributed(keras.layers.Dense(28, activation="sigmoid"))
])
recurrent_ae = keras.models.Sequential([recurrent_encoder, recurrent_decoder])
recurrent_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(0.1),
                     metrics=[rounded_accuracy])

history = recurrent_ae.fit(X_train, X_train, epochs=10, validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 79s 1ms/sample - loss: 0.5165 - rounded_accuracy: 0.7363 - val_loss: 0.4489 - val_rounded_accuracy: 0.8137
Epoch 2/10
55000/55000 [==============================] - 78s 1ms/sample - loss: 0.4049 - rounded_accuracy: 0.8415 - val_loss: 0.3762 - val_rounded_accuracy: 0.8650
Epoch 3/10
55000/55000 [==============================] - 80s 1ms/sample - loss: 0.3662 - rounded_accuracy: 0.8703 - val_loss: 0.3626 - val_rounded_accuracy: 0.8730
Epoch 4/10
55000/55000 [==============================] - 80s 1ms/sample - loss: 0.3505 - rounded_accuracy: 0.8808 - val_loss: 0.3483 - val_rounded_accuracy: 0.8838
Epoch 5/10
55000/55000 [==============================] - 82s 1ms/sample - loss: 0.3398 - rounded_accuracy: 0.8881 - val_loss: 0.3345 - val_rounded_accuracy: 0.8941
Epoch 6/10
55000/55000 [==============================] - 93s 2ms/sample - loss: 0.3328 - rounded_accuracy: 0.8930 - val_loss: 0.3372 - val_rounded_accuracy: 0.8914
Epoch 7/10
55000/55000 [==============================] - 94s 2ms/sample - loss: 0.3280 - rounded_accuracy: 0.8962 - val_loss: 0.3261 - val_rounded_accuracy: 0.8980
Epoch 8/10
55000/55000 [==============================] - 95s 2ms/sample - loss: 0.3244 - rounded_accuracy: 0.8988 - val_loss: 0.3226 - val_rounded_accuracy: 0.9030
Epoch 9/10
55000/55000 [==============================] - 92s 2ms/sample - loss: 0.3215 - rounded_accuracy: 0.9010 - val_loss: 0.3239 - val_rounded_accuracy: 0.8958
Epoch 10/10
55000/55000 [==============================] - 90s 2ms/sample - loss: 0.3190 - rounded_accuracy: 0.9030 - val_loss: 0.3206 - val_rounded_accuracy: 0.9015
<tensorflow.python.keras.callbacks.History at 0x1a5b98fa20>
show_reconstructions(recurrent_ae)
plt.show()

png

Stacked denoising Autoencoder

Using Gaussian noise:

tf.random.set_seed(42)
np.random.seed(42)

denoising_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.GaussianNoise(0.2),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(30, activation="selu")
])
denoising_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[30]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
denoising_ae = keras.models.Sequential([denoising_encoder, denoising_decoder])
denoising_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.0),
                     metrics=[rounded_accuracy])
history = denoising_ae.fit(X_train, X_train, epochs=10,
                           validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 5s 82us/sample - loss: 0.3508 - rounded_accuracy: 0.8768 - val_loss: 0.3231 - val_rounded_accuracy: 0.9065
Epoch 2/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.3125 - rounded_accuracy: 0.9093 - val_loss: 0.3077 - val_rounded_accuracy: 0.9153
Epoch 3/10
55000/55000 [==============================] - 4s 74us/sample - loss: 0.3061 - rounded_accuracy: 0.9149 - val_loss: 0.3034 - val_rounded_accuracy: 0.9190
Epoch 4/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.3025 - rounded_accuracy: 0.9181 - val_loss: 0.3007 - val_rounded_accuracy: 0.9195
Epoch 5/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.2998 - rounded_accuracy: 0.9203 - val_loss: 0.2980 - val_rounded_accuracy: 0.9230
Epoch 6/10
55000/55000 [==============================] - 4s 78us/sample - loss: 0.2979 - rounded_accuracy: 0.9220 - val_loss: 0.2987 - val_rounded_accuracy: 0.9193
Epoch 7/10
55000/55000 [==============================] - 4s 74us/sample - loss: 0.2965 - rounded_accuracy: 0.9233 - val_loss: 0.2945 - val_rounded_accuracy: 0.9269
Epoch 8/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.2953 - rounded_accuracy: 0.9243 - val_loss: 0.2946 - val_rounded_accuracy: 0.9286
Epoch 9/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.2943 - rounded_accuracy: 0.9251 - val_loss: 0.2927 - val_rounded_accuracy: 0.9283
Epoch 10/10
55000/55000 [==============================] - 4s 77us/sample - loss: 0.2935 - rounded_accuracy: 0.9258 - val_loss: 0.2920 - val_rounded_accuracy: 0.9291
tf.random.set_seed(42)
np.random.seed(42)

noise = keras.layers.GaussianNoise(0.2)
show_reconstructions(denoising_ae, noise(X_valid, training=True))
plt.show()

png

Using dropout:

tf.random.set_seed(42)
np.random.seed(42)

dropout_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(30, activation="selu")
])
dropout_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[30]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
dropout_ae = keras.models.Sequential([dropout_encoder, dropout_decoder])
dropout_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.0),
                   metrics=[rounded_accuracy])
history = dropout_ae.fit(X_train, X_train, epochs=10,
                         validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 5s 83us/sample - loss: 0.3564 - accuracy: 0.4969 - val_loss: 0.3206 - val_accuracy: 0.5011
Epoch 2/10
55000/55000 [==============================] - 4s 73us/sample - loss: 0.3182 - accuracy: 0.5034 - val_loss: 0.3113 - val_accuracy: 0.5014
Epoch 3/10
55000/55000 [==============================] - 4s 74us/sample - loss: 0.3130 - accuracy: 0.5042 - val_loss: 0.3079 - val_accuracy: 0.5012
Epoch 4/10
55000/55000 [==============================] - 4s 73us/sample - loss: 0.3091 - accuracy: 0.5048 - val_loss: 0.3037 - val_accuracy: 0.5026
Epoch 5/10
55000/55000 [==============================] - 4s 76us/sample - loss: 0.3066 - accuracy: 0.5052 - val_loss: 0.3032 - val_accuracy: 0.5016
Epoch 6/10
55000/55000 [==============================] - 4s 78us/sample - loss: 0.3047 - accuracy: 0.5054 - val_loss: 0.3001 - val_accuracy: 0.5032
Epoch 7/10
55000/55000 [==============================] - 4s 79us/sample - loss: 0.3033 - accuracy: 0.5056 - val_loss: 0.2987 - val_accuracy: 0.5033
Epoch 8/10
55000/55000 [==============================] - 4s 76us/sample - loss: 0.3021 - accuracy: 0.5057 - val_loss: 0.2976 - val_accuracy: 0.5033
Epoch 9/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.3012 - accuracy: 0.5058 - val_loss: 0.2976 - val_accuracy: 0.5033
Epoch 10/10
55000/55000 [==============================] - 4s 76us/sample - loss: 0.3004 - accuracy: 0.5059 - val_loss: 0.2958 - val_accuracy: 0.5033
tf.random.set_seed(42)
np.random.seed(42)

dropout = keras.layers.Dropout(0.5)
show_reconstructions(dropout_ae, dropout(X_valid, training=True))
save_fig("dropout_denoising_plot", tight_layout=False)

Saving figure dropout_denoising_plot

png

Sparse Autoencoder

Let’s build a simple stacked autoencoder, so we can compare it to the sparse autoencoders we will build. This time we will use the sigmoid activation function for the coding layer, to ensure that the coding values range from 0 to 1:

tf.random.set_seed(42)
np.random.seed(42)

simple_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(30, activation="sigmoid"),
])
simple_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[30]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
simple_ae = keras.models.Sequential([simple_encoder, simple_decoder])
simple_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.),
                  metrics=[rounded_accuracy])
history = simple_ae.fit(X_train, X_train, epochs=10,
                        validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 4s 78us/sample - loss: 0.4331 - accuracy: 0.4906 - val_loss: 0.3778 - val_accuracy: 0.4911
Epoch 2/10
55000/55000 [==============================] - 4s 67us/sample - loss: 0.3610 - accuracy: 0.4976 - val_loss: 0.3510 - val_accuracy: 0.4972
Epoch 3/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.3405 - accuracy: 0.5006 - val_loss: 0.3359 - val_accuracy: 0.4990
Epoch 4/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.3276 - accuracy: 0.5027 - val_loss: 0.3248 - val_accuracy: 0.5003
Epoch 5/10
55000/55000 [==============================] - 4s 72us/sample - loss: 0.3206 - accuracy: 0.5035 - val_loss: 0.3206 - val_accuracy: 0.5007
Epoch 6/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.3172 - accuracy: 0.5038 - val_loss: 0.3176 - val_accuracy: 0.5010
Epoch 7/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.3149 - accuracy: 0.5041 - val_loss: 0.3154 - val_accuracy: 0.5013
Epoch 8/10
55000/55000 [==============================] - 4s 69us/sample - loss: 0.3128 - accuracy: 0.5045 - val_loss: 0.3133 - val_accuracy: 0.5014
Epoch 9/10
55000/55000 [==============================] - 4s 68us/sample - loss: 0.3108 - accuracy: 0.5049 - val_loss: 0.3118 - val_accuracy: 0.5023
Epoch 10/10
55000/55000 [==============================] - 4s 71us/sample - loss: 0.3088 - accuracy: 0.5053 - val_loss: 0.3092 - val_accuracy: 0.5023
show_reconstructions(simple_ae)
plt.show()

png

Let’s create a couple functions to print nice activation histograms:

def plot_percent_hist(ax, data, bins):
    counts, _ = np.histogram(data, bins=bins)
    widths = bins[1:] - bins[:-1]
    x = bins[:-1] + widths / 2
    ax.bar(x, counts / len(data), width=widths*0.8)
    ax.xaxis.set_ticks(bins)
    ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(
        lambda y, position: "{}%".format(int(np.round(100 * y)))))
    ax.grid(True)

def plot_activations_histogram(encoder, height=1, n_bins=10):
    X_valid_codings = encoder(X_valid).numpy()
    activation_means = X_valid_codings.mean(axis=0)
    mean = activation_means.mean()
    bins = np.linspace(0, 1, n_bins + 1)

    fig, [ax1, ax2] = plt.subplots(figsize=(10, 3), nrows=1, ncols=2, sharey=True)
    plot_percent_hist(ax1, X_valid_codings.ravel(), bins)
    ax1.plot([mean, mean], [0, height], "k--", label="Overall Mean = {:.2f}".format(mean))
    ax1.legend(loc="upper center", fontsize=14)
    ax1.set_xlabel("Activation")
    ax1.set_ylabel("% Activations")
    ax1.axis([0, 1, 0, height])
    plot_percent_hist(ax2, activation_means, bins)
    ax2.plot([mean, mean], [0, height], "k--")
    ax2.set_xlabel("Neuron Mean Activation")
    ax2.set_ylabel("% Neurons")
    ax2.axis([0, 1, 0, height])

Let’s use these functions to plot histograms of the activations of the encoding layer. The histogram on the left shows the distribution of all the activations. You can see that values close to 0 or 1 are more frequent overall, which is consistent with the saturating nature of the sigmoid function. The histogram on the right shows the distribution of mean neuron activations: you can see that most neurons have a mean activation close to 0.5. Both histograms tell us that each neuron tends to either fire close to 0 or 1, with about 50% probability each. However, some neurons fire almost all the time (right side of the right histogram).

plot_activations_histogram(simple_encoder, height=0.35)
plt.show()

png

Now let’s add $\ell_1$ regularization to the coding layer:

tf.random.set_seed(42)
np.random.seed(42)

sparse_l1_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(300, activation="sigmoid"),
    keras.layers.ActivityRegularization(l1=1e-3)  # Alternatively, you could add
                                                  # activity_regularizer=keras.regularizers.l1(1e-3)
                                                  # to the previous layer.
])
sparse_l1_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[300]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
sparse_l1_ae = keras.models.Sequential([sparse_l1_encoder, sparse_l1_decoder])
sparse_l1_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.0),
                     metrics=[rounded_accuracy])
history = sparse_l1_ae.fit(X_train, X_train, epochs=10,
                           validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 5s 98us/sample - loss: 0.4306 - accuracy: 0.4947 - val_loss: 0.3819 - val_accuracy: 0.4897
Epoch 2/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.3689 - accuracy: 0.4971 - val_loss: 0.3639 - val_accuracy: 0.4940
Epoch 3/10
55000/55000 [==============================] - 5s 86us/sample - loss: 0.3553 - accuracy: 0.4987 - val_loss: 0.3513 - val_accuracy: 0.4970
Epoch 4/10
55000/55000 [==============================] - 4s 78us/sample - loss: 0.3443 - accuracy: 0.5003 - val_loss: 0.3428 - val_accuracy: 0.4964
Epoch 5/10
55000/55000 [==============================] - 4s 76us/sample - loss: 0.3379 - accuracy: 0.5009 - val_loss: 0.3372 - val_accuracy: 0.4979
Epoch 6/10
55000/55000 [==============================] - 4s 76us/sample - loss: 0.3332 - accuracy: 0.5015 - val_loss: 0.3329 - val_accuracy: 0.4980
Epoch 7/10
55000/55000 [==============================] - 4s 78us/sample - loss: 0.3286 - accuracy: 0.5025 - val_loss: 0.3306 - val_accuracy: 0.4981
Epoch 8/10
55000/55000 [==============================] - 4s 76us/sample - loss: 0.3249 - accuracy: 0.5032 - val_loss: 0.3254 - val_accuracy: 0.5000
Epoch 9/10
55000/55000 [==============================] - 4s 80us/sample - loss: 0.3223 - accuracy: 0.5036 - val_loss: 0.3244 - val_accuracy: 0.4995
Epoch 10/10
55000/55000 [==============================] - 4s 75us/sample - loss: 0.3205 - accuracy: 0.5039 - val_loss: 0.3212 - val_accuracy: 0.5014
show_reconstructions(sparse_l1_ae)

png

plot_activations_histogram(sparse_l1_encoder, height=1.)
plt.show()

png

Let’s use the KL Divergence loss instead to ensure sparsity, and target 10% sparsity rather than 0%:

p = 0.1
q = np.linspace(0.001, 0.999, 500)
kl_div = p * np.log(p / q) + (1 - p) * np.log((1 - p) / (1 - q))
mse = (p - q)**2
mae = np.abs(p - q)
plt.plot([p, p], [0, 0.3], "k:")
plt.text(0.05, 0.32, "Target\nsparsity", fontsize=14)
plt.plot(q, kl_div, "b-", label="KL divergence")
plt.plot(q, mae, "g--", label=r"MAE ($\ell_1$)")
plt.plot(q, mse, "r--", linewidth=1, label=r"MSE ($\ell_2$)")
plt.legend(loc="upper left", fontsize=14)
plt.xlabel("Actual sparsity")
plt.ylabel("Cost", rotation=0)
plt.axis([0, 1, 0, 0.95])
save_fig("sparsity_loss_plot")

Saving figure sparsity_loss_plot

png

K = keras.backend
kl_divergence = keras.losses.kullback_leibler_divergence

class KLDivergenceRegularizer(keras.regularizers.Regularizer):
    def __init__(self, weight, target=0.1):
        self.weight = weight
        self.target = target
    def __call__(self, inputs):
        mean_activities = K.mean(inputs, axis=0)
        return self.weight * (
            kl_divergence(self.target, mean_activities) +
            kl_divergence(1. - self.target, 1. - mean_activities))

tf.random.set_seed(42)
np.random.seed(42)

kld_reg = KLDivergenceRegularizer(weight=0.05, target=0.1)
sparse_kl_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(300, activation="sigmoid", activity_regularizer=kld_reg)
])
sparse_kl_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[300]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
sparse_kl_ae = keras.models.Sequential([sparse_kl_encoder, sparse_kl_decoder])
sparse_kl_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.0),
              metrics=[rounded_accuracy])
history = sparse_kl_ae.fit(X_train, X_train, epochs=10,
                           validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 6s 103us/sample - loss: 0.4151 - rounded_accuracy: 0.8121 - val_loss: 0.3714 - val_rounded_accuracy: 0.8560
Epoch 2/10
55000/55000 [==============================] - 4s 81us/sample - loss: 0.3532 - rounded_accuracy: 0.8762 - val_loss: 0.3442 - val_rounded_accuracy: 0.8842
Epoch 3/10
55000/55000 [==============================] - 5s 83us/sample - loss: 0.3340 - rounded_accuracy: 0.8919 - val_loss: 0.3292 - val_rounded_accuracy: 0.8976
Epoch 4/10
55000/55000 [==============================] - 5s 84us/sample - loss: 0.3224 - rounded_accuracy: 0.9018 - val_loss: 0.3213 - val_rounded_accuracy: 0.9040
Epoch 5/10
55000/55000 [==============================] - 5s 85us/sample - loss: 0.3170 - rounded_accuracy: 0.9062 - val_loss: 0.3170 - val_rounded_accuracy: 0.9075
Epoch 6/10
55000/55000 [==============================] - 5s 82us/sample - loss: 0.3134 - rounded_accuracy: 0.9093 - val_loss: 0.3140 - val_rounded_accuracy: 0.9105
Epoch 7/10
55000/55000 [==============================] - 5s 85us/sample - loss: 0.3107 - rounded_accuracy: 0.9116 - val_loss: 0.3114 - val_rounded_accuracy: 0.9121
Epoch 8/10
55000/55000 [==============================] - 5s 83us/sample - loss: 0.3084 - rounded_accuracy: 0.9136 - val_loss: 0.3094 - val_rounded_accuracy: 0.9145
Epoch 9/10
55000/55000 [==============================] - 5s 83us/sample - loss: 0.3064 - rounded_accuracy: 0.9154 - val_loss: 0.3074 - val_rounded_accuracy: 0.9166
Epoch 10/10
55000/55000 [==============================] - 5s 84us/sample - loss: 0.3044 - rounded_accuracy: 0.9170 - val_loss: 0.3053 - val_rounded_accuracy: 0.9174
show_reconstructions(sparse_kl_ae)

png

plot_activations_histogram(sparse_kl_encoder)
save_fig("sparse_autoencoder_plot")
plt.show()

Saving figure sparse_autoencoder_plot

png

Variational Autoencoder

class Sampling(keras.layers.Layer):
    def call(self, inputs):
        mean, log_var = inputs
        return K.random_normal(tf.shape(log_var)) * K.exp(log_var / 2) + mean 

tf.random.set_seed(42)
np.random.seed(42)

codings_size = 10

inputs = keras.layers.Input(shape=[28, 28])
z = keras.layers.Flatten()(inputs)
z = keras.layers.Dense(150, activation="selu")(z)
z = keras.layers.Dense(100, activation="selu")(z)
codings_mean = keras.layers.Dense(codings_size)(z)
codings_log_var = keras.layers.Dense(codings_size)(z)
codings = Sampling()([codings_mean, codings_log_var])
variational_encoder = keras.models.Model(
    inputs=[inputs], outputs=[codings_mean, codings_log_var, codings])

decoder_inputs = keras.layers.Input(shape=[codings_size])
x = keras.layers.Dense(100, activation="selu")(decoder_inputs)
x = keras.layers.Dense(150, activation="selu")(x)
x = keras.layers.Dense(28 * 28, activation="sigmoid")(x)
outputs = keras.layers.Reshape([28, 28])(x)
variational_decoder = keras.models.Model(inputs=[decoder_inputs], outputs=[outputs])

_, _, codings = variational_encoder(inputs)
reconstructions = variational_decoder(codings)
variational_ae = keras.models.Model(inputs=[inputs], outputs=[reconstructions])

latent_loss = -0.5 * K.sum(
    1 + codings_log_var - K.exp(codings_log_var) - K.square(codings_mean),
    axis=-1)
variational_ae.add_loss(K.mean(latent_loss) / 784.)
variational_ae.compile(loss="binary_crossentropy", optimizer="rmsprop", metrics=[rounded_accuracy])
history = variational_ae.fit(X_train, X_train, epochs=25, batch_size=128,
                             validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/25
55000/55000 [==============================] - 5s 84us/sample - loss: 0.3889 - rounded_accuracy: 0.8608 - val_loss: 0.3592 - val_rounded_accuracy: 0.8840
Epoch 2/25
55000/55000 [==============================] - 3s 60us/sample - loss: 0.3429 - rounded_accuracy: 0.8974 - val_loss: 0.3369 - val_rounded_accuracy: 0.8982
Epoch 3/25
55000/55000 [==============================] - 3s 53us/sample - loss: 0.3329 - rounded_accuracy: 0.9050 - val_loss: 0.3356 - val_rounded_accuracy: 0.9022
Epoch 4/25
55000/55000 [==============================] - 3s 61us/sample - loss: 0.3275 - rounded_accuracy: 0.9092 - val_loss: 0.3255 - val_rounded_accuracy: 0.9105
Epoch 5/25
55000/55000 [==============================] - 3s 59us/sample - loss: 0.3243 - rounded_accuracy: 0.9119 - val_loss: 0.3232 - val_rounded_accuracy: 0.9169
Epoch 6/25
55000/55000 [==============================] - 3s 58us/sample - loss: 0.3219 - rounded_accuracy: 0.9138 - val_loss: 0.3236 - val_rounded_accuracy: 0.9149
Epoch 7/25
55000/55000 [==============================] - 3s 55us/sample - loss: 0.3204 - rounded_accuracy: 0.9150 - val_loss: 0.3194 - val_rounded_accuracy: 0.9176
Epoch 8/25
55000/55000 [==============================] - 3s 56us/sample - loss: 0.3190 - rounded_accuracy: 0.9162 - val_loss: 0.3195 - val_rounded_accuracy: 0.9146
Epoch 9/25
55000/55000 [==============================] - 3s 58us/sample - loss: 0.3180 - rounded_accuracy: 0.9169 - val_loss: 0.3197 - val_rounded_accuracy: 0.9151
Epoch 10/25
55000/55000 [==============================] - 3s 60us/sample - loss: 0.3172 - rounded_accuracy: 0.9178 - val_loss: 0.3169 - val_rounded_accuracy: 0.9192
Epoch 11/25
55000/55000 [==============================] - 3s 57us/sample - loss: 0.3165 - rounded_accuracy: 0.9183 - val_loss: 0.3197 - val_rounded_accuracy: 0.9177
Epoch 12/25
55000/55000 [==============================] - 3s 58us/sample - loss: 0.3159 - rounded_accuracy: 0.9188 - val_loss: 0.3168 - val_rounded_accuracy: 0.9185
Epoch 13/25
55000/55000 [==============================] - 3s 62us/sample - loss: 0.3154 - rounded_accuracy: 0.9193 - val_loss: 0.3175 - val_rounded_accuracy: 0.9178
Epoch 14/25
55000/55000 [==============================] - 4s 64us/sample - loss: 0.3150 - rounded_accuracy: 0.9197 - val_loss: 0.3170 - val_rounded_accuracy: 0.9201
Epoch 15/25
55000/55000 [==============================] - 3s 60us/sample - loss: 0.3145 - rounded_accuracy: 0.9199 - val_loss: 0.3177 - val_rounded_accuracy: 0.9202
Epoch 16/25
55000/55000 [==============================] - 3s 58us/sample - loss: 0.3141 - rounded_accuracy: 0.9202 - val_loss: 0.3161 - val_rounded_accuracy: 0.9206
Epoch 17/25
55000/55000 [==============================] - 3s 61us/sample - loss: 0.3138 - rounded_accuracy: 0.9206 - val_loss: 0.3164 - val_rounded_accuracy: 0.9173
Epoch 18/25
55000/55000 [==============================] - 3s 58us/sample - loss: 0.3135 - rounded_accuracy: 0.9209 - val_loss: 0.3160 - val_rounded_accuracy: 0.9174
Epoch 19/25
55000/55000 [==============================] - 3s 58us/sample - loss: 0.3132 - rounded_accuracy: 0.9211 - val_loss: 0.3160 - val_rounded_accuracy: 0.9216
Epoch 20/25
55000/55000 [==============================] - 3s 61us/sample - loss: 0.3129 - rounded_accuracy: 0.9213 - val_loss: 0.3155 - val_rounded_accuracy: 0.9212
Epoch 21/25
55000/55000 [==============================] - 3s 61us/sample - loss: 0.3127 - rounded_accuracy: 0.9215 - val_loss: 0.3163 - val_rounded_accuracy: 0.9174
Epoch 22/25
55000/55000 [==============================] - 3s 60us/sample - loss: 0.3125 - rounded_accuracy: 0.9217 - val_loss: 0.3145 - val_rounded_accuracy: 0.9215
Epoch 23/25
55000/55000 [==============================] - 3s 53us/sample - loss: 0.3122 - rounded_accuracy: 0.9219 - val_loss: 0.3158 - val_rounded_accuracy: 0.9201
Epoch 24/25
55000/55000 [==============================] - 3s 56us/sample - loss: 0.3121 - rounded_accuracy: 0.9222 - val_loss: 0.3136 - val_rounded_accuracy: 0.9211
Epoch 25/25
55000/55000 [==============================] - 3s 54us/sample - loss: 0.3118 - rounded_accuracy: 0.9223 - val_loss: 0.3133 - val_rounded_accuracy: 0.9228
show_reconstructions(variational_ae)
plt.show()

png

Generate Fashion Images

def plot_multiple_images(images, n_cols=None):
    n_cols = n_cols or len(images)
    n_rows = (len(images) - 1) // n_cols + 1
    if images.shape[-1] == 1:
        images = np.squeeze(images, axis=-1)
    plt.figure(figsize=(n_cols, n_rows))
    for index, image in enumerate(images):
        plt.subplot(n_rows, n_cols, index + 1)
        plt.imshow(image, cmap="binary")
        plt.axis("off")

Let’s generate a few random codings, decode them and plot the resulting images:

tf.random.set_seed(42)

codings = tf.random.normal(shape=[12, codings_size])
images = variational_decoder(codings).numpy()
plot_multiple_images(images, 4)
save_fig("vae_generated_images_plot", tight_layout=False)

Saving figure vae_generated_images_plot

png

Now let’s perform semantic interpolation between these images:

tf.random.set_seed(42)
np.random.seed(42)

codings_grid = tf.reshape(codings, [1, 3, 4, codings_size])
larger_grid = tf.image.resize(codings_grid, size=[5, 7])
interpolated_codings = tf.reshape(larger_grid, [-1, codings_size])
images = variational_decoder(interpolated_codings).numpy()

plt.figure(figsize=(7, 5))
for index, image in enumerate(images):
    plt.subplot(5, 7, index + 1)
    if index%7%2==0 and index//7%2==0:
        plt.gca().get_xaxis().set_visible(False)
        plt.gca().get_yaxis().set_visible(False)
    else:
        plt.axis("off")
    plt.imshow(image, cmap="binary")
save_fig("semantic_interpolation_plot", tight_layout=False)

Saving figure semantic_interpolation_plot

png

Generative Adversarial Networks

np.random.seed(42)
tf.random.set_seed(42)

codings_size = 30

generator = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[codings_size]),
    keras.layers.Dense(150, activation="selu"),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
discriminator = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(150, activation="selu"),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.Dense(1, activation="sigmoid")
])
gan = keras.models.Sequential([generator, discriminator])

discriminator.compile(loss="binary_crossentropy", optimizer="rmsprop")
discriminator.trainable = False
gan.compile(loss="binary_crossentropy", optimizer="rmsprop")

batch_size = 32
dataset = tf.data.Dataset.from_tensor_slices(X_train).shuffle(1000)
dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(1)

def train_gan(gan, dataset, batch_size, codings_size, n_epochs=50):
    generator, discriminator = gan.layers
    for epoch in range(n_epochs):
        print("Epoch {}/{}".format(epoch + 1, n_epochs))              # not shown in the book
        for X_batch in dataset:
            # phase 1 - training the discriminator
            noise = tf.random.normal(shape=[batch_size, codings_size])
            generated_images = generator(noise)
            X_fake_and_real = tf.concat([generated_images, X_batch], axis=0)
            y1 = tf.constant([[0.]] * batch_size + [[1.]] * batch_size)
            discriminator.trainable = True
            discriminator.train_on_batch(X_fake_and_real, y1)
            # phase 2 - training the generator
            noise = tf.random.normal(shape=[batch_size, codings_size])
            y2 = tf.constant([[1.]] * batch_size)
            discriminator.trainable = False
            gan.train_on_batch(noise, y2)
        plot_multiple_images(generated_images, 8)                     # not shown
        plt.show()                                                    # not shown

train_gan(gan, dataset, batch_size, codings_size, n_epochs=1)

Epoch 1/1

png

tf.random.set_seed(42)
np.random.seed(42)

noise = tf.random.normal(shape=[batch_size, codings_size])
generated_images = generator(noise)
plot_multiple_images(generated_images, 8)
save_fig("gan_generated_images_plot", tight_layout=False)

Saving figure gan_generated_images_plot

png

train_gan(gan, dataset, batch_size, codings_size)

Epoch 1/50

png

Epoch 2/50

png

Epoch 3/50

png

Epoch 4/50

png

Epoch 5/50

png

Epoch 6/50

png

Epoch 7/50

png

Epoch 8/50

png

Epoch 9/50

png

Epoch 10/50

png

Epoch 11/50

png

Epoch 12/50

png

Epoch 13/50

png

Epoch 14/50

png

Epoch 15/50

png

Epoch 16/50

png

Epoch 17/50

png

Epoch 18/50

png

Epoch 19/50

png

Epoch 20/50

png

Epoch 21/50

png

Epoch 22/50

png

Epoch 23/50

png

Epoch 24/50

png

Epoch 25/50

png

Epoch 26/50

png

Epoch 27/50

png

Epoch 28/50

png

Epoch 29/50

png

Epoch 30/50

png

Epoch 31/50

png

Epoch 32/50

png

Epoch 33/50

png

Epoch 34/50

png

Epoch 35/50

png

Epoch 36/50

png

Epoch 37/50

png

Epoch 38/50

png

Epoch 39/50

png

Epoch 40/50

png

Epoch 41/50

png

Epoch 42/50

png

Epoch 43/50

png

Epoch 44/50

png

Epoch 45/50

png

Epoch 46/50

png

Epoch 47/50

png

Epoch 48/50

png

Epoch 49/50

png

Epoch 50/50

png

Deep Convolutional GAN

tf.random.set_seed(42)
np.random.seed(42)

codings_size = 100

generator = keras.models.Sequential([
    keras.layers.Dense(7 * 7 * 128, input_shape=[codings_size]),
    keras.layers.Reshape([7, 7, 128]),
    keras.layers.BatchNormalization(),
    keras.layers.Conv2DTranspose(64, kernel_size=5, strides=2, padding="SAME",
                                 activation="selu"),
    keras.layers.BatchNormalization(),
    keras.layers.Conv2DTranspose(1, kernel_size=5, strides=2, padding="SAME",
                                 activation="tanh"),
])
discriminator = keras.models.Sequential([
    keras.layers.Conv2D(64, kernel_size=5, strides=2, padding="SAME",
                        activation=keras.layers.LeakyReLU(0.2),
                        input_shape=[28, 28, 1]),
    keras.layers.Dropout(0.4),
    keras.layers.Conv2D(128, kernel_size=5, strides=2, padding="SAME",
                        activation=keras.layers.LeakyReLU(0.2)),
    keras.layers.Dropout(0.4),
    keras.layers.Flatten(),
    keras.layers.Dense(1, activation="sigmoid")
])
gan = keras.models.Sequential([generator, discriminator])

discriminator.compile(loss="binary_crossentropy", optimizer="rmsprop")
discriminator.trainable = False
gan.compile(loss="binary_crossentropy", optimizer="rmsprop")

X_train_dcgan = X_train.reshape(-1, 28, 28, 1) * 2. - 1. # reshape and rescale

batch_size = 32
dataset = tf.data.Dataset.from_tensor_slices(X_train_dcgan)
dataset = dataset.shuffle(1000)
dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(1)

train_gan(gan, dataset, batch_size, codings_size)

Epoch 1/50
Saving figure gan_generated_images_plot

png

Epoch 2/50

png

Epoch 3/50

png

Epoch 4/50

png

Epoch 5/50

png

Epoch 6/50

png

Epoch 7/50

png

Epoch 8/50

png

Epoch 9/50

png

Epoch 10/50

png

Epoch 11/50

png

Epoch 12/50

png

Epoch 13/50

png

Epoch 14/50

png

Epoch 15/50

png

Epoch 16/50

png

Epoch 17/50

png

Epoch 18/50

png

Epoch 19/50

png

Epoch 20/50

png

Epoch 21/50

png

Epoch 22/50

png

Epoch 23/50

png

Epoch 24/50

png

Epoch 25/50

png

Epoch 26/50

png

Epoch 27/50

png

Epoch 28/50

png

Epoch 29/50

png

Epoch 30/50

png

Epoch 31/50

png

Epoch 32/50

png

Epoch 33/50

png

Epoch 34/50

png

Epoch 35/50

png

Epoch 36/50

png

Epoch 37/50

png

Epoch 38/50

png

Epoch 39/50

png

Epoch 40/50

png

Epoch 41/50

png

Epoch 42/50

png

Epoch 43/50

png

Epoch 44/50

png

Epoch 45/50

png

Epoch 46/50

png

Epoch 47/50

png

Epoch 48/50

png

Epoch 49/50

png

Epoch 50/50

png

tf.random.set_seed(42)
np.random.seed(42)

noise = tf.random.normal(shape=[batch_size, codings_size])
generated_images = generator(noise)
plot_multiple_images(generated_images, 8)
save_fig("dcgan_generated_images_plot", tight_layout=False)

Saving figure dcgan_generated_images_plot

png

Exercise Solutions

Unsupervised pretraining

Let’s create a small neural network for MNIST classification:

tf.random.set_seed(42)
np.random.seed(42)

X_train_small = X_train[:500]
y_train_small = y_train[:500]

classifier = keras.models.Sequential([
    keras.layers.Reshape([28, 28, 1], input_shape=[28, 28]),
    keras.layers.Conv2D(16, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Conv2D(32, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Conv2D(64, kernel_size=3, padding="SAME", activation="selu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Flatten(),
    keras.layers.Dense(20, activation="selu"),
    keras.layers.Dense(10, activation="softmax")
])
classifier.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=0.02),
                   metrics=["accuracy"])
history = classifier.fit(X_train_small, y_train_small, epochs=20, validation_data=[X_valid, y_valid])

Train on 500 samples, validate on 5000 samples
Epoch 1/20
500/500 [==============================] - 1s 3ms/sample - loss: 2.1965 - accuracy: 0.2480 - val_loss: 2.0234 - val_accuracy: 0.3148
Epoch 2/20
500/500 [==============================] - 1s 2ms/sample - loss: 1.7927 - accuracy: 0.5180 - val_loss: 1.5677 - val_accuracy: 0.6280
Epoch 3/20
500/500 [==============================] - 1s 2ms/sample - loss: 1.3931 - accuracy: 0.6360 - val_loss: 1.2556 - val_accuracy: 0.5482
Epoch 4/20
500/500 [==============================] - 1s 2ms/sample - loss: 1.1168 - accuracy: 0.6620 - val_loss: 0.9990 - val_accuracy: 0.6892
Epoch 5/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.9421 - accuracy: 0.7360 - val_loss: 1.1235 - val_accuracy: 0.6208
Epoch 6/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.8392 - accuracy: 0.7240 - val_loss: 0.8985 - val_accuracy: 0.6778
Epoch 7/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.7738 - accuracy: 0.7400 - val_loss: 0.7833 - val_accuracy: 0.7296
Epoch 8/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.7472 - accuracy: 0.7380 - val_loss: 0.7364 - val_accuracy: 0.7396
Epoch 9/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6908 - accuracy: 0.7580 - val_loss: 0.8782 - val_accuracy: 0.6802
Epoch 10/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6740 - accuracy: 0.7640 - val_loss: 0.7064 - val_accuracy: 0.7454
Epoch 11/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6431 - accuracy: 0.7700 - val_loss: 0.8587 - val_accuracy: 0.6848
Epoch 12/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6301 - accuracy: 0.7740 - val_loss: 0.6704 - val_accuracy: 0.7584
Epoch 13/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5834 - accuracy: 0.8040 - val_loss: 0.7229 - val_accuracy: 0.7302
Epoch 14/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5612 - accuracy: 0.8220 - val_loss: 0.6370 - val_accuracy: 0.7734
Epoch 15/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5845 - accuracy: 0.7960 - val_loss: 0.6511 - val_accuracy: 0.7592
Epoch 16/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5488 - accuracy: 0.8080 - val_loss: 0.7779 - val_accuracy: 0.7014
Epoch 17/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5362 - accuracy: 0.8160 - val_loss: 0.6632 - val_accuracy: 0.7636
Epoch 18/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5064 - accuracy: 0.8180 - val_loss: 0.7703 - val_accuracy: 0.6954
Epoch 19/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5147 - accuracy: 0.8240 - val_loss: 0.6980 - val_accuracy: 0.7390
Epoch 20/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5151 - accuracy: 0.8160 - val_loss: 0.7014 - val_accuracy: 0.7374
import pandas as pd
pd.DataFrame(history.history).plot()
plt.show()

png

tf.random.set_seed(42)
np.random.seed(42)

conv_encoder_clone = keras.models.clone_model(conv_encoder)

pretrained_clf = keras.models.Sequential([
    conv_encoder_clone,
    keras.layers.Flatten(),
    keras.layers.Dense(20, activation="selu"),
    keras.layers.Dense(10, activation="softmax")
])

conv_encoder_clone.trainable = False
pretrained_clf.compile(loss="sparse_categorical_crossentropy",
                       optimizer=keras.optimizers.SGD(lr=0.02),
                       metrics=["accuracy"])
history = pretrained_clf.fit(X_train_small, y_train_small, epochs=30,
                             validation_data=[X_valid, y_valid])

Train on 500 samples, validate on 5000 samples
Epoch 1/30
500/500 [==============================] - 1s 3ms/sample - loss: 2.3174 - accuracy: 0.1820 - val_loss: 2.2350 - val_accuracy: 0.2156
Epoch 2/30
500/500 [==============================] - 1s 2ms/sample - loss: 2.1829 - accuracy: 0.2760 - val_loss: 2.1267 - val_accuracy: 0.3650
Epoch 3/30
500/500 [==============================] - 1s 2ms/sample - loss: 2.0852 - accuracy: 0.3880 - val_loss: 2.0370 - val_accuracy: 0.4378
Epoch 4/30
500/500 [==============================] - 1s 2ms/sample - loss: 1.9953 - accuracy: 0.4500 - val_loss: 1.9513 - val_accuracy: 0.5028
Epoch 5/30
500/500 [==============================] - 1s 2ms/sample - loss: 1.9117 - accuracy: 0.5860 - val_loss: 1.8742 - val_accuracy: 0.5610
Epoch 6/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.8310 - accuracy: 0.6180 - val_loss: 1.7963 - val_accuracy: 0.6242
Epoch 7/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.7526 - accuracy: 0.6760 - val_loss: 1.7218 - val_accuracy: 0.6440
Epoch 8/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.6823 - accuracy: 0.6760 - val_loss: 1.6525 - val_accuracy: 0.6682
Epoch 9/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.6132 - accuracy: 0.7020 - val_loss: 1.5936 - val_accuracy: 0.6430
Epoch 10/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.5521 - accuracy: 0.6960 - val_loss: 1.5257 - val_accuracy: 0.6844
Epoch 11/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.4915 - accuracy: 0.7180 - val_loss: 1.4718 - val_accuracy: 0.6688
Epoch 12/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.4381 - accuracy: 0.7200 - val_loss: 1.4196 - val_accuracy: 0.6832
Epoch 13/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.3849 - accuracy: 0.7180 - val_loss: 1.3708 - val_accuracy: 0.6798
Epoch 14/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.3376 - accuracy: 0.7180 - val_loss: 1.3270 - val_accuracy: 0.6852
Epoch 15/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.2971 - accuracy: 0.7320 - val_loss: 1.2876 - val_accuracy: 0.6846
Epoch 16/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.2556 - accuracy: 0.7380 - val_loss: 1.2488 - val_accuracy: 0.6976
Epoch 17/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.2174 - accuracy: 0.7240 - val_loss: 1.2141 - val_accuracy: 0.6938
Epoch 18/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.1855 - accuracy: 0.7300 - val_loss: 1.1859 - val_accuracy: 0.6938
Epoch 19/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.1551 - accuracy: 0.7400 - val_loss: 1.1562 - val_accuracy: 0.6982
Epoch 20/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.1256 - accuracy: 0.7300 - val_loss: 1.1256 - val_accuracy: 0.7016
Epoch 21/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.0985 - accuracy: 0.7520 - val_loss: 1.0996 - val_accuracy: 0.7064
Epoch 22/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.0735 - accuracy: 0.7400 - val_loss: 1.0756 - val_accuracy: 0.7142
Epoch 23/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.0494 - accuracy: 0.7560 - val_loss: 1.0562 - val_accuracy: 0.7066
Epoch 24/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.0259 - accuracy: 0.7480 - val_loss: 1.0377 - val_accuracy: 0.7034
Epoch 25/30
500/500 [==============================] - 1s 1ms/sample - loss: 1.0079 - accuracy: 0.7440 - val_loss: 1.0139 - val_accuracy: 0.7174
Epoch 26/30
500/500 [==============================] - 1s 1ms/sample - loss: 0.9860 - accuracy: 0.7420 - val_loss: 0.9959 - val_accuracy: 0.7224
Epoch 27/30
500/500 [==============================] - 1s 1ms/sample - loss: 0.9691 - accuracy: 0.7440 - val_loss: 0.9819 - val_accuracy: 0.7180
Epoch 28/30
500/500 [==============================] - 1s 1ms/sample - loss: 0.9526 - accuracy: 0.7600 - val_loss: 0.9638 - val_accuracy: 0.7238
Epoch 29/30
500/500 [==============================] - 1s 1ms/sample - loss: 0.9365 - accuracy: 0.7600 - val_loss: 0.9512 - val_accuracy: 0.7236
Epoch 30/30
500/500 [==============================] - 1s 1ms/sample - loss: 0.9203 - accuracy: 0.7600 - val_loss: 0.9364 - val_accuracy: 0.7244
conv_encoder_clone.trainable = True
pretrained_clf.compile(loss="sparse_categorical_crossentropy",
                       optimizer=keras.optimizers.SGD(lr=0.02),
                       metrics=["accuracy"])
history = pretrained_clf.fit(X_train_small, y_train_small, epochs=20,
                             validation_data=[X_valid, y_valid])

Train on 500 samples, validate on 5000 samples
Epoch 1/20
500/500 [==============================] - 1s 3ms/sample - loss: 0.8479 - accuracy: 0.7360 - val_loss: 0.8023 - val_accuracy: 0.7154
Epoch 2/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.7508 - accuracy: 0.7480 - val_loss: 0.7908 - val_accuracy: 0.7062
Epoch 3/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6956 - accuracy: 0.7700 - val_loss: 0.8156 - val_accuracy: 0.7006
Epoch 4/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6806 - accuracy: 0.7700 - val_loss: 0.7408 - val_accuracy: 0.7244
Epoch 5/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6563 - accuracy: 0.7700 - val_loss: 0.6731 - val_accuracy: 0.7540
Epoch 6/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6262 - accuracy: 0.7920 - val_loss: 0.7332 - val_accuracy: 0.7316
Epoch 7/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.6039 - accuracy: 0.7860 - val_loss: 0.6458 - val_accuracy: 0.7592
Epoch 8/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5875 - accuracy: 0.7800 - val_loss: 0.8370 - val_accuracy: 0.6970
Epoch 9/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5720 - accuracy: 0.8000 - val_loss: 0.6247 - val_accuracy: 0.7724
Epoch 10/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5601 - accuracy: 0.8140 - val_loss: 0.6436 - val_accuracy: 0.7524
Epoch 11/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5256 - accuracy: 0.8300 - val_loss: 0.6169 - val_accuracy: 0.7738
Epoch 12/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5029 - accuracy: 0.8260 - val_loss: 0.6318 - val_accuracy: 0.7672
Epoch 13/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.4956 - accuracy: 0.8340 - val_loss: 0.6539 - val_accuracy: 0.7548
Epoch 14/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.4754 - accuracy: 0.8360 - val_loss: 0.6640 - val_accuracy: 0.7598
Epoch 15/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.5025 - accuracy: 0.8240 - val_loss: 0.6049 - val_accuracy: 0.7762
Epoch 16/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.4462 - accuracy: 0.8440 - val_loss: 0.5851 - val_accuracy: 0.7882
Epoch 17/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.4607 - accuracy: 0.8400 - val_loss: 0.6206 - val_accuracy: 0.7706
Epoch 18/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.4216 - accuracy: 0.8580 - val_loss: 0.6025 - val_accuracy: 0.7800
Epoch 19/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.4308 - accuracy: 0.8460 - val_loss: 0.6109 - val_accuracy: 0.7702
Epoch 20/20
500/500 [==============================] - 1s 2ms/sample - loss: 0.4044 - accuracy: 0.8580 - val_loss: 0.5820 - val_accuracy: 0.7902

Hashing Using a Binary Autoencoder

tf.random.set_seed(42)
np.random.seed(42)

hashing_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(100, activation="selu"),
    keras.layers.GaussianNoise(15.),
    keras.layers.Dense(16, activation="sigmoid"),
])
hashing_decoder = keras.models.Sequential([
    keras.layers.Dense(100, activation="selu", input_shape=[16]),
    keras.layers.Dense(28 * 28, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
hashing_ae = keras.models.Sequential([hashing_encoder, hashing_decoder])
hashing_ae.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1.0),
                   metrics=[rounded_accuracy])
history = hashing_ae.fit(X_train, X_train, epochs=10,
                         validation_data=[X_valid, X_valid])

Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 4s 77us/sample - loss: 0.4999 - accuracy: 0.4830 - val_loss: 0.4866 - val_accuracy: 0.4815
Epoch 2/10
55000/55000 [==============================] - 4s 69us/sample - loss: 0.4780 - accuracy: 0.4892 - val_loss: 0.4768 - val_accuracy: 0.4540
Epoch 3/10
55000/55000 [==============================] - 4s 69us/sample - loss: 0.4284 - accuracy: 0.4889 - val_loss: 0.4229 - val_accuracy: 0.4757
Epoch 4/10
55000/55000 [==============================] - 4s 70us/sample - loss: 0.4088 - accuracy: 0.4895 - val_loss: 0.4195 - val_accuracy: 0.4752
Epoch 5/10
55000/55000 [==============================] - 4s 70us/sample - loss: 0.4018 - accuracy: 0.4900 - val_loss: 0.4166 - val_accuracy: 0.4751
Epoch 6/10
55000/55000 [==============================] - 4s 69us/sample - loss: 0.3971 - accuracy: 0.4905 - val_loss: 0.4170 - val_accuracy: 0.4746
Epoch 7/10
55000/55000 [==============================] - 4s 69us/sample - loss: 0.3933 - accuracy: 0.4909 - val_loss: 0.4106 - val_accuracy: 0.4763
Epoch 8/10
55000/55000 [==============================] - 4s 71us/sample - loss: 0.3902 - accuracy: 0.4912 - val_loss: 0.4038 - val_accuracy: 0.4794
Epoch 9/10
55000/55000 [==============================] - 4s 65us/sample - loss: 0.3877 - accuracy: 0.4917 - val_loss: 0.4049 - val_accuracy: 0.4782
Epoch 10/10
55000/55000 [==============================] - 4s 66us/sample - loss: 0.3858 - accuracy: 0.4917 - val_loss: 0.4002 - val_accuracy: 0.4793
show_reconstructions(hashing_ae)
plt.show()

png

plot_activations_histogram(hashing_encoder)
plt.show()

png

hashes = np.round(hashing_encoder.predict(X_valid)).astype(np.int32)
hashes *= np.array([[2**bit for bit in range(16)]])
hashes = hashes.sum(axis=1)
for h in hashes[:5]:
    print("{:016b}".format(h))
print("...")

0000100100000001
0000100100000000
0000100100000001
0000100000000000
0000100000100000
...
n_bits = 4
n_images = 8
plt.figure(figsize=(n_images, n_bits))
for bit_index in range(n_bits):
    in_bucket = (hashes & 2**bit_index != 0)
    for index, image in zip(range(n_images), X_valid[in_bucket]):
        plt.subplot(n_bits, n_images, bit_index * n_images + index + 1)
        plt.imshow(image, cmap="binary")
        plt.axis("off")

png